
alchemlyb Documentation
Release 0.4.0+0.g478392a.dirty

David Dotson, Ian Kenney, Oliver Beckstein, Shuai Liu, Travis Jensen, Bryce Allen, Dominik Wille, Victoria Lim, Hyungro Lee, Mohammad S. Barhaghi, Zhiyi Wu

Apr 27, 2021

USER DOCUMENTATION

1 Core philosophy 3

2 Development model 5

3 Contributing 7

Bibliography 33

Python Module Index 35

Index 37

i

ii

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

alchemlyb is a library for doing alchemical free energy calculations more easily. It includes functions for parsing
data from formats common to existing MD engines, subsampling these data, and fitting these data with an estimator
to obtain free energies. These functions are simple in usage and pure in scope, and can be chained together to build
customized analyses of data.

alchemlyb seeks to be as boring and simple as possible to enable more complex work. Its components allow work at
all scales, from use on small systems using a single workstation to larger datasets that require distributed computing
using libraries such as dask.

The library is under active development and the API is still somewhat in flux. However, it is used by multiple groups
in a production environment. We use semantic versioning to indicate clearly what kind of changes you may expect
between releases. See Contributing for how to get in touch if you have questions or find problems.

USER DOCUMENTATION 1

http://dask.pydata.org
https://semver.org

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

2 USER DOCUMENTATION

CHAPTER

ONE

CORE PHILOSOPHY

With its goal to remain simple to use, alchemlyb’s design philosophy follows the following points:

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).

2. For estimators, mimic the scikit-learn API as much as possible.

3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a common set of outputs.

For more details, see the Roadmap.

3

https://github.com/alchemistry/alchemlyb/wiki/Roadmap

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

4 Chapter 1. Core philosophy

CHAPTER

TWO

DEVELOPMENT MODEL

This is an open-source project, the hope of which is to produce a library with which the community is happy. To
enable this, the library is a community effort. Development is done in the open on GitHub.

Software engineering best-practices are used throughout, including continuous integration testing via Travis CI, up-
to-date documentation, and regular releases.

5

https://github.com/alchemistry/alchemlyb

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

6 Chapter 2. Development model

CHAPTER

THREE

CONTRIBUTING

Contributions are very welcome. If you have bug reports or feature requests or questions then please get in touch with
us through the Issue Tracker. We also welcome code contributions: have a look at our Developer Guide and submit a
pull request against the alchemistry/alchemlyb GitHub repository.

3.1 Installing alchemlyb

alchemlyb is pure-Python, so it can be installed easily via pip:

pip install alchemlyb

If you wish to install this in your user site-packages, use the --user flag:

pip install --user alchemlyb

3.1.1 Installing from source

from source. Clone the source from GitHub with:

git clone https://github.com/alchemistry/alchemlyb.git

then do:

cd alchemlyb
pip install .

If you wish to install this in your user site-packages, use the --user flag:

pip install --user .

7

https://github.com/alchemistry/alchemlyb/issues
https://github.com/alchemistry/alchemlyb/wiki/Developer-Guide
https://github.com/alchemistry/alchemlyb

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

3.2 Parsing data files

alchemlyb features parsing submodules for getting raw data from different software packages into common data
structures that can be used directly by its subsamplers and estimators. Each submodule features at least two functions,
namely:

extract_dHdl Extract the gradient of the Hamiltonian, 𝑑𝐻
𝑑𝜆 , for each timestep of the sampled state. Required input

for TI-based estimators.

extract_u_nk Extract reduced potentials, 𝑢𝑛𝑘, for each timestep of the sampled state and all neighboring states.
Required input for FEP-based estimators.

These functions have a consistent interface across all submodules, often taking a single file as input and any additional
parameters required for giving either dHdl or u_nk in standard form.

3.2.1 Standard forms of raw data

All components of alchemlyb are designed to work together well with minimal work on the part of the user. To
make this possible, the library deals in a common data structure for each dHdl and u_nk, and all parsers yield these
quantities in these standard forms. The layout of these data structures allow for easy stacking of samples from different
simulations while retaining information on where each sample came from using e.g. pandas.concat().

dHdl standard form

All parsers yielding dHdl gradients return this as a pandas.DataFrame with the following structure:

coul vdw
time coul-lambda vdw-lambda

0.0 0.0 0.0 10.264125 -0.522539
1.0 0.0 0.0 9.214077 -2.492852
2.0 0.0 0.0 -8.527066 -0.405814
3.0 0.0 0.0 11.544028 -0.358754

.....
97.0 1.0 1.0 -10.681702 -18.603644
98.0 1.0 1.0 29.518990 -4.955664
99 0 1.0 1.0 -3.833667 -0.836967

100.0 1.0 1.0 -12.835707 0.786278

This is a multi-index DataFrame, giving time for each sample as the outermost index, and the value of each 𝜆 from
which the sample came as subsequent indexes. The columns of the DataFrame give the value of 𝑑𝐻

𝑑𝜆 with respect to
each of these separate 𝜆 parameters.

For datasets that sample with only a single 𝜆 parameter, then the DataFrame will feature only a single column perhaps
like:

fep
time fep-lambda

0.0 0.0 10.264125
1.0 0.0 9.214077
2.0 0.0 -8.527066
3.0 0.0 11.544028

.....
97.0 1.0 -10.681702
98.0 1.0 29.518990
99 0 1.0 -3.833667

100.0 1.0 -12.835707

8 Chapter 3. Contributing

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

u_nk standard form

All parsers yielding u_nk reduced potentials return this as a pandas.DataFrame with the following structure:

(0.0, 0.0) (0.25, 0.0) (0.5, 0.0) ... (1.0, 1.0)
time coul-lambda vdw-lambda

0.0 0.0 0.0 -22144.50 -22144.24 -22143.98 -21984.81
1.0 0.0 0.0 -21985.24 -21985.10 -21984.96 -22124.26
2.0 0.0 0.0 -22124.58 -22124.47 -22124.37 -22230.61
3.0 1.0 0.1 -22230.65 -22230.63 -22230.62 -22083.04

.....
97.0 1.0 1.0 -22082.29 -22082.54 -22082.79 -22017.42
98.0 1.0 1.0 -22087.57 -22087.76 -22087.94 -22135.15
99.0 1.0 1.0 -22016.69 -22016.93 -22017.17 -22057.68

100.0 1.0 1.0 -22137.19 -22136.51 -22135.83 -22101.26

This is a multi-index DataFrame, giving time for each sample as the outermost index, and the value of each 𝜆 from
which the sample came as subsequent indexes. The columns of the DataFrame give the value of 𝑢𝑛𝑘 for each set of 𝜆
parameters values were recorded for. Column labels are the values of the 𝜆 parameters as a tuple in the same order as
they appear in the multi-index.

For datasets that sample only a single 𝜆 parameter, then the DataFrame will feature only a single index in addition to
time, with the values of 𝜆 for which reduced potentials were recorded given as column labels:

0.0 0.25 0.5 ... 1.0
time fep-lambda

0.0 0.0 -22144.50 -22144.24 -22143.98 -21984.81
1.0 0.0 -21985.24 -21985.10 -21984.96 -22124.26
2.0 0.0 -22124.58 -22124.47 -22124.37 -22230.61
3.0 1.0 -22230.65 -22230.63 -22230.62 -22083.04

.....
97.0 1.0 -22082.29 -22082.54 -22082.79 -22017.42
98.0 1.0 -22087.57 -22087.76 -22087.94 -22135.15
99.0 1.0 -22016.69 -22016.93 -22017.17 -22057.68

100.0 1.0 -22137.19 -22136.51 -22135.83 -22101.26

A note on units

Throughout alchemlyb, energy quantities such as dHdl or u_nk are given in units of 𝑘𝐵𝑇 . Also, although parsers
will extract timestamps from input data, these are taken as-is and the library does not have any awareness of units for
these. Keep this in mind when doing, e.g. subsampling.

3.2.2 Parsers by software package

alchemlyb tries to provide parser functions for as many simulation packages as possible. See the documentation for
the package you are using for more details on parser usage, including the assumptions parsers make and suggestions
for how output data should be structured for ease of use:

gmx Parsers for extracting alchemical data from Gromacs
output files.

amber Parsers for extracting alchemical data from Amber out-
put files.

continues on next page

3.2. Parsing data files 9

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://www.gromacs.org/
http://ambermd.org

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Table 1 – continued from previous page
namd Parsers for extracting alchemical data from NAMD out-

put files.
gomc Parsers for extracting alchemical data from GOMC out-

put files.

Gromacs parsing

Parsers for extracting alchemical data from Gromacs output files.

The parsers featured in this module are constructed to properly parse XVG files containing Hamiltonian differences
(for obtaining reduced potentials, 𝑢𝑛𝑘) and/or Hamiltonian derivatives (for obtaining gradients, 𝑑𝐻

𝑑𝜆). To produce such
a file from an existing EDR energy file, use gmx energy -f <.edr> -odh dhdl.xvg with your installation
of Gromacs.

If you wish to use FEP-based estimators such as MBAR that require reduced potentials for all lambda states in the
alchemical leg, you will need to use these MDP options:

calc-lambda-neighbors = -1 ; calculate Delta H values for all other lambda windows
dhdl-print-energy = potential ; total potential energy of system included

In addition, the full set of lambda states for the alchemical leg should be explicitly specified in the fep-lambdas
option (or coul-lambdas, vdw-lambdas, etc.), since this is what Gromacs uses to determine what lambda values
to calculate ∆𝐻 values for.

To use TI-based estimators that require gradients, you will need to include these options:

dhdl-derivatives = yes ; write derivatives of Hamiltonian with respect to
→˓lambda

Additionally, the parsers can properly parse XVG files (containing Hamiltonian differences and/or Hamiltonian deriva-
tives) produced during expanded ensemble simulations. To produce such a file during the simulation, use gmx mdrun
-deffnm <name> -dhdl dhdl.xvg with your installation of Gromacs. To run an expanded ensemble simula-
tion you will need to use the following MDP option:

free_energy = expanded ; turns on expanded ensemble simulation, lambda state
→˓becomes a dynamic variable

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.gmx.extract_dHdl(xvg, T)
Return gradients dH/dl from a Hamiltonian differences XVG file.

Parameters

• xvg (str) – Path to XVG file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

Returns dH/dl – dH/dl as a function of time for this lambda window.

Return type Series

alchemlyb.parsing.gmx.extract_u_nk(xvg, T)
Return reduced potentials u_nk from a Hamiltonian differences XVG file.

10 Chapter 3. Contributing

http://www.ks.uiuc.edu/Research/namd/
http://gomc.eng.wayne.edu/
http://www.gromacs.org/
http://www.gromacs.org/
http://www.gromacs.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Parameters

• xvg (str) – Path to XVG file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

Returns u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type DataFrame

Amber parsing

Parsers for extracting alchemical data from Amber output files.

Most of the file parsing parts are inherited from alchemical-analysis.

The parsers featured in this module are constructed to properly parse Amber MD output files containing derivatives of
the Hamiltonian and FEP (BAR/MBAR) data.

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.amber.extract_dHdl(outfile, T)
Return gradients dH/dl from Amber TI outputfile.

Parameters

• outfile (str) – Path to Amber .out file to extract data from.

• T (float) – Temperature in Kelvin at which the simulations were performed

Returns dH/dl – dH/dl as a function of time for this lambda window.

Return type Series

alchemlyb.parsing.amber.extract_u_nk(outfile, T)
Return reduced potentials u_nk from Amber outputfile.

Parameters

• outfile (str) – Path to Amber .out file to extract data from.

• T (float) – Temperature in Kelvin at which the simulations were performed; needed to
generated the reduced potential (in units of kT)

Returns u_nk – Reduced potential for each alchemical state (k) for each frame (n).

Return type DataFrame

NAMD parsing

Parsers for extracting alchemical data from NAMD output files.

The parsers featured in this module are constructed to properly parse NAMD .fepout output files containing deriva-
tives of the Hamiltonian and FEP (BAR) data. See the NAMD documentation for the theoretical backdrop and imple-
mentation details.

If you wish to use BAR on FEP data, be sure to provide the .fepout file from both the forward and reverse transfor-
mations.

3.2. Parsing data files 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://ambermd.org
https://github.com/MobleyLab/alchemical-analysis
http://ambermd.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node60.html
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node61.html
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node61.html

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

After calling extract_u_nk() on the forward and reverse work values, these dataframes can be combined into
one:

replace zeroes in initial dataframe with nan
u_nk_fwd.replace(0, np.nan, inplace=True)
replace the nan values with the reverse dataframe --
this should not overwrite any of the fwd work values
u_nk_fwd[u_nk_fwd.isnull()] = u_nk_rev
replace remaining nan values back to zero
u_nk_fwd.replace(np.nan, 0, inplace=True)
sort final dataframe by `fep-lambda` (as opposed to `timestep`)
u_nk = u_nk_fwd.sort_index(level=u_nk_fwd.index.names[1:])

The fep-lambda index states at which lambda this particular frame was sampled, whereas the columns are the
evaluations of the Hamiltonian (or the potential energy U) at other lambdas (sometimes called “foreign lambdas”).

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.namd.extract_u_nk(fep_file, T)
Return reduced potentials u_nk from NAMD fepout file.

Parameters

• fep_file (str) – Path to fepout file to extract data from.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type DataFrame

GOMC parsing

Parsers for extracting alchemical data from GOMC output files.

The parsers featured in this module are constructed to properly parse GOMC free energy output files, containing the
Hamiltonian derivatives (𝑑𝐻𝑑𝜆) for TI-based estimators and Hamiltonian differences (∆𝐻 for all lambda states in the
alchemical leg) for FEP-based estimators (BAR/MBAR).

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.gomc.extract_dHdl(filename, T)
Return gradients dH/dl from a Hamiltonian differences free energy file.

Parameters

• filename (str) – Path to free energy file to extract data from.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns dH/dl – dH/dl as a function of step for this lambda window.

Return type Series

12 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://gomc.eng.wayne.edu/
http://gomc.eng.wayne.edu/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

alchemlyb.parsing.gomc.extract_u_nk(filename, T)
Return reduced potentials u_nk from a Hamiltonian differences dat file.

Parameters

• filename (str) – Path to free energy file to extract data from.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type DataFrame

3.3 Preprocessing datasets

It is often the case that some initial pre-processing of raw datasets are desirable before feeding these to an estimator.
alchemlyb features some commonly-used pre-processing tools as a convenience. These are featured in the following
submodules:

subsampling Functions for subsampling datasets.

3.3.1 Subsampling

Functions for subsampling datasets.

The functions featured in this module can be used to easily subsample either dHdl or u_nk datasets to give less
correlated timeseries.

API Reference

alchemlyb.preprocessing.subsampling.slicing(df, lower=None, upper=None, step=None,
force=False)

Subsample a DataFrame using simple slicing.

Parameters

• df (DataFrame) – DataFrame to subsample.

• lower (float) – Lower time to slice from.

• upper (float) – Upper time to slice to (inclusive).

• step (int) – Step between rows to slice by.

• force (bool) – Ignore checks that DataFrame is in proper form for expected behavior.

Returns df subsampled.

Return type DataFrame

alchemlyb.preprocessing.subsampling.statistical_inefficiency(df, series=None,
lower=None,
upper=None,
step=None, con-
servative=True,
drop_duplicates=False,
sort=False)

Subsample a DataFrame based on the calculated statistical inefficiency of a timeseries.

3.3. Preprocessing datasets 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

If series is None, then this function will behave the same as slicing().

Parameters

• df (DataFrame) – DataFrame to subsample according statistical inefficiency of series.

• series (Series) – Series to use for calculating statistical inefficiency. If None, no
statistical inefficiency-based subsampling will be performed.

• lower (float) – Lower bound to pre-slice series data from.

• upper (float) – Upper bound to pre-slice series to (inclusive).

• step (int) – Step between series items to pre-slice by.

• conservative (bool) – True use ceil(statistical_inefficiency) to slice
the data in uniform intervals (the default). False will sample at non-uniform inter-
vals to closely match the (fractional) statistical_inefficieny, as implemented in pymbar.
timeseries.subsampleCorrelatedData().

• drop_duplicates (bool) – Drop the duplicated lines based on time.

• sort (bool) – Sort the Dataframe based on the time column.

Returns df subsampled according to subsampled series.

Return type DataFrame

Warning: The series and the data to be sliced, df, need to have the same number of elements because the
statistical inefficiency is calculated based on the index of the series (and not an associated time). At the
moment there is no automatic conversion from a time to an index.

Note: For a non-integer statistical ineffciency 𝑔, the default value conservative=True will provide
fewer data points than allowed by 𝑔 and thus error estimates will be _higher_. For large numbers of data
points and converged free energies, the choice should not make a difference. For small numbers of data points,
conservative=True decreases a false sense of accuracy and is deemed the more careful and conservative
approach.

See also:

pymbar.timeseries.statisticalInefficiency detailed background

pymbar.timeseries.subsampleCorrelatedData used for subsampling

Changed in version 0.2.0: The conservative keyword was added and the method is now using pymbar.
timeseries.statisticalInefficiency(); previously, the statistical inefficiency was _rounded_
(instead of ceil()) and thus one could end up with correlated data.

alchemlyb.preprocessing.subsampling.equilibrium_detection(df, series=None,
lower=None, up-
per=None, step=None)

Subsample a DataFrame using automated equilibrium detection on a timeseries.

If series is None, then this function will behave the same as slicing().

Parameters

• df (DataFrame) – DataFrame to subsample according to equilibrium detection on series.

14 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsampleCorrelatedData
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsampleCorrelatedData
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.statisticalInefficiency
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsampleCorrelatedData

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

• series (Series) – Series to detect equilibration on. If None, no equilibrium detection-
based subsampling will be performed.

• lower (float) – Lower bound to pre-slice series data from.

• upper (float) – Upper bound to pre-slice series to (inclusive).

• step (int) – Step between series items to pre-slice by.

Returns df subsampled according to subsampled series.

Return type DataFrame

See also:

pymbar.timeseries.detectEquilibration detailed background

3.4 Using estimators to obtain free energies

Calculating free energy differences from raw alchemical data requires the use of some estimator. All estimators in
alchemlyb conform to a common design pattern, with a form similar to that of estimators found in scikit-learn. If you
have familiarity with the usage of estimators in scikit-learn, then working with estimators in alchemlyb should be
somewhat straightforward.

alchemlyb provides implementations of many commonly-used estimators, which come in two varieties: TI-based and
FEP-based.

3.4.1 TI-based estimators

TI-based estimators such as TI take as input dHdl gradients for the calculation of free energy differences. All TI-based
estimators integrate these gradients with respect to 𝜆, differing only in how they numerically perform this integration.

As a usage example, we’ll use TI to calculate the free energy of solvation of benzene in water. We’ll use the benzene-
in-water dataset from alchemtest.gmx:

>>> from alchemtest.gmx import load_benzene
>>> bz = load_benzene().data

and parse the datafiles separately for each alchemical leg using alchemlyb.parsing.gmx.extract_dHdl()
to obtain dHdl gradients:

>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> import pandas as pd

>>> dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])

We can now use the TI estimator to obtain the free energy differences between each 𝜆 window sampled. The fit()
method is used to perform the free energy estimate, given the gradient data:

>>> from alchemlyb.estimators import TI

>>> ti_coul = TI()
>>> ti_coul.fit(dHdl_coul)
TI(verbose=False)

(continues on next page)

3.4. Using estimators to obtain free energies 15

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.detectEquilibration
http://scikit-learn.org
https://alchemtest.readthedocs.io/en/latest/gmx.html#module-alchemtest.gmx

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

(continued from previous page)

we could also just call the `fit` method
directly, since it returns the `TI` object
>>> ti_vdw = TI().fit(dHdl_vdw)

The sum of the endpoint free energy differences will be the free energy of solvation for benzene in water. The free
energy differences (in units of 𝑘𝐵𝑇) between each 𝜆 window can be accessed via the delta_f_ attribute:

>>> ti_coul.delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 1.620328 2.573337 3.022170 3.089027
0.25 -1.620328 0.000000 0.953009 1.401842 1.468699
0.50 -2.573337 -0.953009 0.000000 0.448832 0.515690
0.75 -3.022170 -1.401842 -0.448832 0.000000 0.066857
1.00 -3.089027 -1.468699 -0.515690 -0.066857 0.000000

So we can get the endpoint differences (free energy difference between 𝜆 = 0 and 𝜆 = 1) of each with:

>>> ti_coul.delta_f_.loc[0.00, 1.00]
3.0890270218676896

>>> ti_vdw.delta_f_.loc[0.00, 1.00]
-3.0558175199846058

giving us a solvation free energy in units of 𝑘𝐵𝑇 for benzene of:

>>> ti_coul.delta_f_.loc[0.00, 1.00] + ti_vdw.delta_f_.loc[0.00, 1.00]
0.033209501883083803

In addition to the free energy differences, we also have access to the errors on these differences via the d_delta_f_
attribute:

>>> ti_coul.d_delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 0.009706 0.013058 0.015038 0.016362
0.25 0.009706 0.000000 0.008736 0.011486 0.013172
0.50 0.013058 0.008736 0.000000 0.007458 0.009858
0.75 0.015038 0.011486 0.007458 0.000000 0.006447
1.00 0.016362 0.013172 0.009858 0.006447 0.000000

List of TI-based estimators

TI([verbose]) Thermodynamic integration (TI).

16 Chapter 3. Contributing

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

TI

The TI estimator is a simple implementation of thermodynamic integration that uses the trapezoid rule for integrating
the space between

⟨︀
𝑑𝐻
𝑑𝜆

⟩︀
values for each 𝜆 sampled.

API Reference

class alchemlyb.estimators.TI(verbose=False)
Thermodynamic integration (TI).

Parameters verbose (bool, optional) – Set to True if verbose debug output is desired.

delta_f_
The estimated dimensionless free energy difference between each state.

Type DataFrame

d_delta_f_
The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type DataFrame

states_
Lambda states for which free energy differences were obtained.

Type list

dhdl
The estimated dhdl of each state.

Type DataFrame

fit(dHdl)
Compute free energy differences between each state by integrating dHdl across lambda values.

Parameters dHdl (DataFrame) – dHdl[n,k] is the potential energy gradient with respect to
lambda for each configuration n and lambda k.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

separate_dhdl()
For transitions with multiple lambda, the attr:dhdl would return a DataFrame which gives the dHdl for
all the lambda states, regardless of whether it is perturbed or not. This function creates a list of pandas.
Series for each lambda, where each pandas.Series describes the potential energy gradient for the
lambdas state that is perturbed.

Returns dHdl_list – A list of pandas.Series such that dHdl_list[k] is the potential
energy gradient with respect to lambda for each configuration that lambda k is perturbed.

Return type list

set_params(**params)
Set the parameters of this estimator.

3.4. Using estimators to obtain free energies 17

https://en.wikipedia.org/wiki/Thermodynamic_integration
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#list

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

3.4.2 FEP-based estimators

FEP-based estimators such as MBAR take as input u_nk reduced potentials for the calculation of free energy differences.
All FEP-based estimators make use of the overlap between distributions of these values for each sampled 𝜆, differing
in how they use this overlap information to give their free energy difference estimate.

As a usage example, we’ll use MBAR to calculate the free energy of solvation of benzene in water. We’ll use the
benzene-in-water dataset from alchemtest.gmx:

>>> from alchemtest.gmx import load_benzene
>>> bz = load_benzene().data

and parse the datafiles separately for each alchemical leg using alchemlyb.parsing.gmx.extract_u_nk()
to obtain u_nk reduced potentials:

>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> import pandas as pd

>>> u_nk_coul = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> u_nk_vdw = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['VDW']])

We can now use the MBAR estimator to obtain the free energy differences between each 𝜆 window sampled. The
fit() method is used to perform the free energy estimate, given the gradient data:

>>> from alchemlyb.estimators import MBAR

>>> mbar_coul = MBAR()
>>> mbar_coul.fit(u_nk_coul)
MBAR(initial_f_k=None, maximum_iterations=10000, method=({'method': 'hybr'},),

relative_tolerance=1e-07, verbose=False)

we could also just call the `fit` method
directly, since it returns the `MBAR` object
>>> mbar_vdw = MBAR().fit(u_nk_vdw)

The sum of the endpoint free energy differences will be the free energy of solvation for benzene in water. The free
energy differences (in units of 𝑘𝐵𝑇) between each 𝜆 window can be accessed via the delta_f_ attribute:

>>> mbar_coul.delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 1.619069 2.557990 2.986302 3.041156
0.25 -1.619069 0.000000 0.938921 1.367232 1.422086
0.50 -2.557990 -0.938921 0.000000 0.428311 0.483165
0.75 -2.986302 -1.367232 -0.428311 0.000000 0.054854
1.00 -3.041156 -1.422086 -0.483165 -0.054854 0.000000

So we can get the endpoint differences (free energy difference between 𝜆 = 0 and 𝜆 = 1) of each with:

18 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict
https://alchemtest.readthedocs.io/en/latest/gmx.html#module-alchemtest.gmx

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

>>> mbar_coul.delta_f_.loc[0.00, 1.00]
3.0411558818767954

>>> mbar_vdw.delta_f_.loc[0.00, 1.00]
-3.0067874666136074

giving us a solvation free energy in units of 𝑘𝐵𝑇 for benzene of:

>>> mbar_coul.delta_f_.loc[0.00, 1.00] + mbar_vdw.delta_f_.loc[0.00, 1.00]
0.034368415263188012

In addition to the free energy differences, we also have access to the errors on these differences via the d_delta_f_
attribute:

>>> mbar_coul.d_delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 0.008802 0.014432 0.018097 0.020879
0.25 0.008802 0.000000 0.006642 0.011404 0.015143
0.50 0.014432 0.006642 0.000000 0.005362 0.009983
0.75 0.018097 0.011404 0.005362 0.000000 0.005133
1.00 0.020879 0.015143 0.009983 0.005133 0.000000

List of FEP-based estimators

MBAR([maximum_iterations, . . .]) Multi-state Bennett acceptance ratio (MBAR).
BAR([maximum_iterations, . . .]) Bennett acceptance ratio (BAR).

MBAR

The MBAR estimator is a light wrapper around the reference implementation of MBAR from pymbar (pymbar.
mbar.MBAR). As a generalization of BAR, it uses information from all sampled states to generate an estimate for the
free energy difference between each state.

API Reference

class alchemlyb.estimators.MBAR(maximum_iterations=10000, relative_tolerance=1e-07, ini-
tial_f_k=None, method='hybr', verbose=False)

Multi-state Bennett acceptance ratio (MBAR).

Parameters

• maximum_iterations (int, optional) – Set to limit the maximum number of it-
erations performed.

• relative_tolerance (float, optional) – Set to determine the relative tolerance
convergence criteria.

• initial_f_k (np.ndarray, float, shape=(K), optional) – Set to the
initial dimensionless free energies to use as a guess (default None, which sets all f_k =
0).

• method (str, optional, default="hybr") – The optimization routine to
use. This can be any of the methods available via scipy.optimize.minimize() or

3.4. Using estimators to obtain free energies 19

https://pymbar.readthedocs.io/en/latest/mbar.html#pymbar.mbar.MBAR
https://pymbar.readthedocs.io/en/latest/mbar.html#pymbar.mbar.MBAR
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

scipy.optimize.root().

• verbose (bool, optional) – Set to True if verbose debug output is desired.

delta_f_
The estimated dimensionless free energy difference between each state.

Type DataFrame

d_delta_f_
The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type DataFrame

theta_
The theta matrix.

Type DataFrame

states_
Lambda states for which free energy differences were obtained.

Type list

fit(u_nk)
Compute overlap matrix of reduced potentials using multi-state Bennett acceptance ratio.

Parameters u_nk (DataFrame) – u_nk[n,k] is the reduced potential energy of uncorrelated
configuration n evaluated at state k.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

property overlap_matrix
MBAR overlap matrix.

The estimated state overlap matrix 𝑂𝑖𝑗 is an estimate of the probability of observing a sample from state 𝑖
in state 𝑗.

The overlap_matrix is computed on-the-fly. Assign it to a variable if you plan to re-use it.

See also:

pymbar.mbar.MBAR.computeOverlap

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

20 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://pymbar.readthedocs.io/en/latest/mbar.html#pymbar.mbar.MBAR.computeOverlap
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

BAR

The BAR estimator is a light wrapper around the implementation of the Bennett Acceptance Ratio (BAR) method from
pymbar (pymbar.mbar.BAR). It uses information from neighboring sampled states to generate an estimate for the
free energy difference between these state.

See also:

alchemlyb.estimators.MBAR

API Reference

class alchemlyb.estimators.BAR(maximum_iterations=10000, relative_tolerance=1e-07,
method='false-position', verbose=False)

Bennett acceptance ratio (BAR).

Parameters

• maximum_iterations (int, optional) – Set to limit the maximum number of it-
erations performed.

• relative_tolerance (float, optional) – Set to determine the relative tolerance
convergence criteria.

• method (str, optional, default='false-position') – choice of method
to solve BAR nonlinear equations, one of ‘self-consistent-iteration’ or ‘false-position’ (de-
fault: ‘false-position’)

• verbose (bool, optional) – Set to True if verbose debug output is desired.

delta_f_
The estimated dimensionless free energy difference between each state.

Type DataFrame

d_delta_f_
The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type DataFrame

states_
Lambda states for which free energy differences were obtained.

Type list

fit(u_nk)
Compute overlap matrix of reduced potentials using Bennett acceptance ratio.

Parameters u_nk (DataFrame) – u_nk[n,k] is the reduced potential energy of uncorrelated
configuration n evaluated at state k.

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type dict

3.4. Using estimators to obtain free energies 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type estimator instance

3.5 Visualisation of the results

It is quite often that the user want to visualise the results to gain confidence on the computed free energy. alchemlyb
provides various visualisation tools to help user to judge the estimate.

plot_mbar_overlap_matrix(matrix[, . . .]) Plot the MBAR overlap matrix.
plot_ti_dhdl(dhdl_data[, labels, colors, . . .]) Plot the dhdl of TI.
plot_dF_state(estimators[, labels, colors, . . .]) Plot the dhdl of TI.
plot_convergence(forward, forward_error, . . .) Plot the forward and backward convergence.

3.5.1 Plot Overlap Matrix from MBAR

The function plot_mbar_overlap_matrix() allows the user to plot the overlap matrix from
overlap_matrix. The user can pass matplotlib.axes.Axes into the function to have the overlap
maxtrix drawn on a specific axes. The user could also specify a list of lambda states to be skipped when labelling the
states.

Please check How to plot MBAR overlap matrix for usage.

API Reference

alchemlyb.visualisation.plot_mbar_overlap_matrix(matrix, skip_lambda_index=[],
ax=None)

Plot the MBAR overlap matrix.

Parameters

• matrix (numpy.matrix) – DataFrame of the overlap matrix obtained from
overlap_matrix

• skip_lambda_index (List) – list of lambda indices to be omitted from plotting pro-
cess. Default: [].

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn
on. If ax=None, a new axes will be generated.

Returns An axes with the overlap matrix drawn.

Return type matplotlib.axes.Axes

22 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Notes

The code is taken and modified from : Alchemical Analysis

3.5.2 Plot dhdl from TI

The function plot_ti_dhdl() allows the user to plot the dhdl from TI estimator. Several TI estimators could be
passed to the function to give a concerted picture of the whole alchemical transformation. When custom labels are
desirable, the user could pass a list of strings to the labels for labelling each alchemical transformation differently.
The color of each alchemical transformation could also be set by passing a list of color string to the colors. The
unit in the y axis could be labelled to other units by setting units, which by default is kcal/mol. The user can pass
matplotlib.axes.Axes into the function to have the dhdl drawn on a specific axes.

Please check How to plot TI dhdl for usage.

API Reference

alchemlyb.visualisation.plot_ti_dhdl(dhdl_data, labels=None, colors=None,
units='kcal/mol', ax=None)

Plot the dhdl of TI.

Parameters

• dhdl_data (TI or list) – One or more TI estimator, where the dhdl value will be taken
from.

• labels (List) – list of labels for labelling all the alchemical transformations.

• colors (List) – list of colors for plotting all the alchemical transformations. Default:
[‘r’, ‘g’, ‘#7F38EC’, ‘#9F000F’, ‘b’, ‘y’]

• units (str) – The unit of the estimate. Default: ‘kcal/mol’

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn
on. If ax=None, a new axes will be generated.

Returns An axes with the TI dhdl drawn.

Return type matplotlib.axes.Axes

Notes

The code is taken and modified from : Alchemical Analysis

3.5.3 Plot dF states from multiple estimators

The function plot_dF_state() allows the user to plot and compare the free energy difference between states
(“dF”) from various kinds of estimators.

To compare the dF states of a single alchemical transformation among various estimators, the user can pass a list
of estimators. (e.g. estimators = [TI, BAR, MBAR])

To compare the dF states of a multiple alchemical transformations, results from the same estimators can be
concatenated into a list, which is then bundled to to another list of different estimators. (e.g. estimators = [(TI,
TI), (BAR, BAR), (MBAR, MBAR)])

3.5. Visualisation of the results 23

https://github.com/MobleyLab/alchemical-analysis
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

The figure could be plotted in portrait or landscape mode by setting the orientation. nb is used to control the number
of dF states in one row. The user could pass a list of strings to labels to name the estimators or a list of strings to
colors to color the estimators differently. The unit in the y axis could be labelled to other units by setting units, which
by default is kcal/mol.

Please check How to plot dF states for a complete example.

API Reference

alchemlyb.visualisation.plot_dF_state(estimators, labels=None, colors=None,
units='kcal/mol', orientation='portrait', nb=10)

Plot the dhdl of TI.

Parameters

• estimators (estimators or list) – One or more estimators, where the dhdl value
will be taken from. For more than one estimators with more than one alchemical transfor-
mation, a list of list format is used.

• labels (List) – list of labels for labelling different estimators.

• colors (List) – list of colors for plotting different estimators.

• units (str) – The unit of the estimate. Default: ‘kcal/mol’

• orientation (string) – The orientation of the figure. Can be portrait or landscape

• nb (int) – Maximum number of dF states in one row in the portrait mode

Returns An Figure with the dF states drawn.

Return type matplotlib.figure.Figure

Notes

The code is taken and modified from : Alchemical Analysis

3.5.4 Plot the Forward and Backward Convergence

The function plot_convergence() allows the user to visualise the convergence by plotting the free energy change
computed using the equilibrated snapshots between the proper target time frames in both forward (data points are
stored in forward and forward_error) and reverse (data points are stored in backward and backward_error) directions.
The unit in the y axis could be labelled to other units by setting units, which by default is 𝑘𝑇 . The user can pass
matplotlib.axes.Axes into the function to have the convergence drawn on a specific axes.

Please check How to plot convergence for usage.

24 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

API Reference

alchemlyb.visualisation.plot_convergence(forward, forward_error, backward, back-
ward_error, units='kT', ax=None)

Plot the forward and backward convergence.

Parameters

• forward (List) – A list of free energy estimate from the first X% of data.

• forward_error (List) – A list of error from the first X% of data.

• backward (List) – A list of free energy estimate from the last X% of data.

• backward_error (List) – A list of error from the last X% of data.

• units (str) – The label for the unit of the estimate. Default: kT

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn
on. If ax=None, a new axes will be generated.

Returns An axes with the forward and backward convergence drawn.

Return type matplotlib.axes.Axes

Note: The code is taken and modified from : Alchemical Analysis

The units variable is for labelling only. Changing it doesn’t change the unit of the underlying variable, which is
in the unit of kT. The scaling_factor is used to change the number to the desired unit.

3.5.5 Overlap Matrix of the MBAR

The accuracy of the MBAR estimator depends on the overlap between different lambda states. The overlap matrix from
the MBAR estimator could be plotted using plot_mbar_overlap_matrix() to check the degree of overlap. It is
recommended that there should be at least 0.03 [Klimovich2015] overlap between neighboring states.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.estimators import MBAR

>>> bz = load_benzene().data
>>> u_nk_coul = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> mbar_coul = MBAR()
>>> mbar_coul.fit(u_nk_coul)

>>> from alchemlyb.visualisation import plot_mbar_overlap_matrix
>>> ax = plot_mbar_overlap_matrix(mbar_coul.overlap_matrix)
>>> ax.figure.savefig('O_MBAR.pdf', bbox_inches='tight', pad_inches=0.0)

Will give a plot looks like this

3.5. Visualisation of the results 25

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Fig. 1: Overlap between the distributions of potential energy differences is essential for accurate free energy calcula-
tions and can be quantified by computing the overlap matrix . Its elements are the probabilities of observing a sample
from state i (th row) in state j (th column).

3.5.6 dhdl Plot of the TI

In order for the TI estimator to work reliably, the change in the dhdl between lambda state 0 and lambda state 1
should be adequately sampled. The function plot_ti_dhdl() can be used to assess the change of the dhdl across
the lambda states.

More than one TI estimators can be plotted together as well.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> from alchemlyb.estimators import TI

>>> bz = load_benzene().data
>>> dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> ti_coul = TI().fit(dHdl_coul)
>>> dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
>>> ti_vdw = TI().fit(dHdl_vdw)

>>> from alchemlyb.visualisation import plot_ti_dhdl
>>> ax = plot_ti_dhdl([ti_coul, ti_vdw], labels=['Coul', 'VDW'], colors=['r', 'g'])
>>> ax.figure.savefig('dhdl_TI.pdf')

Will give a plot looks like this

3.5.7 dF States Plots between Different estimators

Another way of assessing the quality of free energy estimate would be comparing the free energy difference between
adjacent lambda states (dF) using different estimators [Klimovich2015]. The function plot_dF_state() can
be used, for example, to compare the dF of both Coulombic and VDW transformations using TI, BAR and MBAR
estimators.

>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk, extract_dHdl
>>> from alchemlyb.estimators import MBAR, TI, BAR
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from alchemlyb.visualisation.dF_state import plot_dF_state

(continues on next page)

26 Chapter 3. Contributing

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Fig. 2: A plot of / versus for thermodynamic integration, with filled areas indicating free energy estimates from the
trapezoid rule. Different components are shown in distinct colors: in red is the electrostatic component (indices 0–4),
while in green is the van der Waals component (indices 5–19). Color intensity alternates with increasing index.

3.5. Visualisation of the results 27

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

(continued from previous page)

>>> bz = load_benzene().data
>>> u_nk_coul = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> u_nk_vdw = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['VDW']])
>>> dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
>>> ti_coul = TI().fit(dHdl_coul)
>>> ti_vdw = TI().fit(dHdl_vdw)
>>> bar_coul = BAR().fit(u_nk_coul)
>>> bar_vdw = BAR().fit(u_nk_vdw)
>>> mbar_coul = MBAR().fit(u_nk_coul)
>>> mbar_vdw = MBAR().fit(u_nk_vdw)

>>> estimators = [(ti_coul, ti_vdw),
(bar_coul, bar_vdw),
(mbar_coul, mbar_vdw),]

>>> fig = plot_dF_state(estimators, orientation='portrait')
>>> fig.savefig('dF_state.pdf', bbox_inches='tight')

Will give a plot looks like this

Fig. 3: A bar plot of the free energy differences evaluated between pairs of adjacent states via several methods, with
corresponding error estimates for each method.

28 Chapter 3. Contributing

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

3.5.8 Forward and Backward Convergence

One way of determining the simulation end point is to plot the forward and backward convergence of the estimate
using plot_convergence().

Note that this is just a plotting function to plot [Klimovich2015] style convergence plot. The user need to provide the
forward and backward data list and the corresponding error.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.estimators import MBAR

>>> bz = load_benzene().data
>>> data_list = [extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']]
>>> forward = []
>>> forward_error = []
>>> backward = []
>>> backward_error = []
>>> num_points = 10
>>> for i in range(1, num_points+1):
>>> # Do the forward
>>> slice = int(len(data_list[0])/num_points*i)
>>> u_nk_coul = pd.concat([data[:slice] for data in data_list])
>>> estimate = MBAR().fit(u_nk_coul)
>>> forward.append(estimate.delta_f_.iloc[0,-1])
>>> forward_error.append(estimate.d_delta_f_.iloc[0,-1])
>>> # Do the backward
>>> u_nk_coul = pd.concat([data[-slice:] for data in data_list])
>>> estimate = MBAR().fit(u_nk_coul)
>>> backward.append(estimate.delta_f_.iloc[0,-1])
>>> backward_error.append(estimate.d_delta_f_.iloc[0,-1])

>>> from alchemlyb.visualisation import plot_convergence
>>> ax = plot_convergence(forward, forward_error, backward, backward_error)
>>> ax.figure.savefig('dF_t.pdf')

Will give a plot looks like this

3.6 API principles

The following is an overview over the guiding principles and ideas that underpin the API of alchemlyb.

3.6.1 alchemlyb

alchemlyb is a library that seeks to make doing alchemical free energy calculations easier and less error prone. It
includes functions for parsing data from formats common to existing MD engines, subsampling these data, and fitting
these data with an estimator to obtain free energies. These functions are simple in usage and pure in scope, and can be
chained together to build customized analyses of data.

alchemlyb seeks to be as boring and simple as possible to enable more complex work. Its components allow work at
all scales, from use on small systems using a single workstation to larger datasets that require distributed computing
using libraries such as dask.

3.6. API principles 29

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

Fig. 4: A convergence plot of showing that the forward and backward has converged fully.

30 Chapter 3. Contributing

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

First and foremost, scientific code must be correct and we try to ensure this requirement by following best software
engineering practices during development, close to full test coverage of all code in the library, and providing citations
to published papers for included algorithms. We use a curated, public data set (alchemtest) for automated testing.

3.6.2 Core philosophy

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).

2. For estimators, mimic the scikit-learn API as much as possible.

3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a common set of outputs.

4. Have all functionality tested.

3.6.3 API components

The library is structured as follows, following a similar style to scikit-learn:

alchemlyb
parsing

amber.py
gmx.py
gomc.py
namd.py
...

preprocessing
subsampling.py
...

estimators
bar_.py
mbar_.py
ti_.py
...

convergence ### NOT IMPLEMENTED
convergence.py
...

visualisation
convergence.py
dF_state.py
mbar_matrix.py
ti_dhdl.py
...

The parsing submodule contains parsers for individual MD engines, since the output files needed to perform al-
chemical free energy calculations vary widely and are not standardized. Each module at the very least provides an
extract_u_nk function for extracting reduced potentials (needed for MBAR), as well as an extract_dHdl function for
extracting derivatives required for thermodynamic integration. Other helper functions may be exposed for additional
processing, such as generating an XVG file from an EDR file in the case of GROMACS. All extract_* functions take
similar arguments (a file path, parameters such as temperature), and produce standard outputs (pandas.DataFrame
for reduced potentials, pandas.Series for derivatives).

The preprocessing submodule features functions for subsampling timeseries, as may be desired before feeding
them to an estimator. So far, these are limited to slicing, statistical_inefficiency, and equilibrium_detection functions,
many of which make use of subsampling schemes available from pymbar. These functions are written in such a way
that they can be easily composed as parts of complex processing pipelines.

3.6. API principles 31

https://github.com/alchemistry/alchemtest
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

The estimators module features classes a la scikit-learn that can be initialized with parameters that determine
their behavior and then “trained” on a fit method. MBAR, BAR, and thermodynamic integration (TI) as the major
methods are all implemented. Correct error estimates require the use of time series with independent samples.

The convergence submodule will feature convenience functions/classes for doing convergence analysis us-
ing a given dataset and a chosen estimator, though the form of this is not yet thought-out. However, the gist
a41e5756a58e1775e3e3a915f07bfd37 shows an example for how this can be done already in practice.

The visualization submodule contains convenience plotting functions as known from, for example, alchemical-
analysis.py.

All of these components lend themselves well to writing clear and flexible pipelines for processing data needed for
alchemical free energy calculations, and furthermore allow for scaling up via libraries like dask or joblib.

3.6.4 Development model

This is an open-source project, the hope of which is to produce a library with which the community is happy. To enable
this, the library will be a community effort. Development is done in the open on GitHub. Software engineering best-
practices will be used throughout, including continuous integration testing via Travis CI, up-to-date documentation,
and regular releases.

Following discussion, refinement, and consensus on this proposal, issues for each need will be posted and work will
begin on filling out the rest of the library. In particular, parsers will be crowdsourced from the existing community and
refined into the consistent form described above.

3.6.5 Historical notes

Some of the components were originally demoed in gist a41e5756a58e1775e3e3a915f07bfd37.

David Dotson (@dotsdl) started the project while employed as a software engineer by Oliver Beckstein (@orbeckst),
and this project was a primary point of focus for him in this position.

32 Chapter 3. Contributing

https://gist.github.com/dotsdl/a41e5756a58e1775e3e3a915f07bfd37
https://gist.github.com/dotsdl/a41e5756a58e1775e3e3a915f07bfd37
https://github.com/MobleyLab/alchemical-analysis/
https://github.com/MobleyLab/alchemical-analysis/
https://dask.org/
https://joblib.readthedocs.io
https://gist.github.com/dotsdl/a41e5756a58e1775e3e3a915f07bfd37

BIBLIOGRAPHY

[Klimovich2015] Klimovich, P.V., Shirts, M.R. & Mobley, D.L. Guidelines for the analysis of free energy calcula-
tions. J Comput Aided Mol Des 29, 397–411 (2015). https://doi.org/10.1007/s10822-015-9840-9

33

https://doi.org/10.1007/s10822-015-9840-9

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

34 Bibliography

PYTHON MODULE INDEX

a
alchemlyb.parsing.amber, 11
alchemlyb.parsing.gmx, 10
alchemlyb.parsing.gomc, 12
alchemlyb.parsing.namd, 11
alchemlyb.preprocessing.subsampling, 13

35

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

36 Python Module Index

INDEX

A
alchemlyb.parsing.amber

module, 11
alchemlyb.parsing.gmx

module, 10
alchemlyb.parsing.gomc

module, 12
alchemlyb.parsing.namd

module, 11
alchemlyb.preprocessing.subsampling

module, 13

B
BAR (class in alchemlyb.estimators), 21

D
d_delta_f_ (alchemlyb.estimators.BAR attribute), 21
d_delta_f_ (alchemlyb.estimators.MBAR attribute),

20
d_delta_f_ (alchemlyb.estimators.TI attribute), 17
delta_f_ (alchemlyb.estimators.BAR attribute), 21
delta_f_ (alchemlyb.estimators.MBAR attribute), 20
delta_f_ (alchemlyb.estimators.TI attribute), 17
dhdl (alchemlyb.estimators.TI attribute), 17

E
equilibrium_detection() (in module

alchemlyb.preprocessing.subsampling), 14
extract_dHdl() (in module

alchemlyb.parsing.amber), 11
extract_dHdl() (in module alchemlyb.parsing.gmx),

10
extract_dHdl() (in module

alchemlyb.parsing.gomc), 12
extract_u_nk() (in module

alchemlyb.parsing.amber), 11
extract_u_nk() (in module alchemlyb.parsing.gmx),

10
extract_u_nk() (in module

alchemlyb.parsing.gomc), 12
extract_u_nk() (in module

alchemlyb.parsing.namd), 12

F
fit() (alchemlyb.estimators.BAR method), 21
fit() (alchemlyb.estimators.MBAR method), 20
fit() (alchemlyb.estimators.TI method), 17

G
get_params() (alchemlyb.estimators.BAR method),

21
get_params() (alchemlyb.estimators.MBAR method),

20
get_params() (alchemlyb.estimators.TI method), 17

M
MBAR (class in alchemlyb.estimators), 19
module

alchemlyb.parsing.amber, 11
alchemlyb.parsing.gmx, 10
alchemlyb.parsing.gomc, 12
alchemlyb.parsing.namd, 11
alchemlyb.preprocessing.subsampling,

13

O
overlap_matrix() (alchemlyb.estimators.MBAR

property), 20

P
plot_convergence() (in module

alchemlyb.visualisation), 25
plot_dF_state() (in module

alchemlyb.visualisation), 24
plot_mbar_overlap_matrix() (in module

alchemlyb.visualisation), 22
plot_ti_dhdl() (in module

alchemlyb.visualisation), 23

S
separate_dhdl() (alchemlyb.estimators.TI method),

17
set_params() (alchemlyb.estimators.BAR method),

21

37

alchemlyb Documentation, Release 0.4.0+0.g478392a.dirty

set_params() (alchemlyb.estimators.MBAR method),
20

set_params() (alchemlyb.estimators.TI method), 17
slicing() (in module

alchemlyb.preprocessing.subsampling), 13
states_ (alchemlyb.estimators.BAR attribute), 21
states_ (alchemlyb.estimators.MBAR attribute), 20
states_ (alchemlyb.estimators.TI attribute), 17
statistical_inefficiency() (in module

alchemlyb.preprocessing.subsampling), 13

T
theta_ (alchemlyb.estimators.MBAR attribute), 20
TI (class in alchemlyb.estimators), 17

38 Index

	Core philosophy
	Development model
	Contributing
	Bibliography
	Python Module Index
	Index

