
alchemlyb Documentation
Release 2.1.0+0.gf5cf43a.dirty

Irfan Alibay, Bryce Allen, Mohammad S. Barhaghi, Oliver Beckstein, David Dotson, Jérôme Hénin, Travis Jensen, Thomas T. Joseph, Ian Kenney, Hyungro Lee, Victoria Lim, Shuai Liu, Domenico Marson, Pascal Merz, Alexander Schlaich, Dominik Wille, Zhiyi Wu

Jun 22, 2023

USER DOCUMENTATION

1 Core philosophy 3

2 Development model 5

3 Getting involved 7

Bibliography 65

Python Module Index 67

Index 69

i

ii

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

alchemlyb is a library for doing alchemical free energy calculations more easily.

It seeks to provide flexible building blocks covering functions for parsing data from formats common to existing MD
engines, subsampling these data, fitting these data with an estimator to obtain free energies, and plotting the results.

These functions are simple in usage and pure in scope, and can be chained together to build customized analyses
of data. General and robust workflows following best practices are also provided, which can be used as reference
implementations and examples.

alchemlyb seeks to be as boring and simple as possible to enable more complex work. Its components allow work at
all scales, from use on small systems using a single workstation to larger datasets that require distributed computing
using libraries such as dask.

The library is under active development. However, it is used by multiple groups in a production environment. We
use semantic versioning to indicate clearly what kind of changes you may expect between releases. Within any major
release (1.x, 2.x, . . .), the API is stable and is guaranteed to remain backwards-compatible.

Note: The current 2.x release of alchemlyb only supports pymbar releases >= 4.0. (Previous 1.x releases only support
pymbar >= 3.0.5, <4.) See discussion #205 and issue #207.

See Getting involved for how to get in touch if you have questions or find problems.

USER DOCUMENTATION 1

http://dask.pydata.org
https://semver.org
https://github.com/choderalab/pymbar
https://github.com/alchemistry/alchemlyb/discussions/205
https://github.com/alchemistry/alchemlyb/issues/207

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

2 USER DOCUMENTATION

CHAPTER

ONE

CORE PHILOSOPHY

With its goal to remain simple to use, alchemlyb’s design philosophy follows the following points:

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).

2. For estimators, mimic the scikit-learn API as much as possible.

3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a common set of outputs.

For more details, see the Roadmap.

3

https://github.com/alchemistry/alchemlyb/wiki/Roadmap

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

4 Chapter 1. Core philosophy

CHAPTER

TWO

DEVELOPMENT MODEL

This is an open-source project, the hope of which is to produce a library with which the community is happy. To enable
this, the library is a community effort. Development is done in the open on GitHub.

Software engineering best-practices are used throughout, including continuous integration testing via Github Actions,
up-to-date documentation, and regular releases.

Note: With release 0.5.0, the alchemlyb project adopted NEP 29 to determine which versions of Python and NumPy
will be supported. When we release a new major or minor version, alchemlyb will support at least all minor versions
of Python introduced and released in the prior 42 months from the release date with a minimum of 2 minor versions
of Python, and all minor versions of NumPy released in the prior 24 months from the anticipated release date with a
minimum of 3 minor versions of NumPy.

The pandas package (one of our other primary dependencies) also follows NEP 29 so this support policy will make it
easier to maintain alchemlyb in the future.

5

https://github.com/alchemistry/alchemlyb
https://numpy.org/neps/nep-0029-deprecation_policy.html
https://numpy.org
https://pandas.pydata.org/
https://numpy.org/neps/nep-0029-deprecation_policy.html

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

6 Chapter 2. Development model

CHAPTER

THREE

GETTING INVOLVED

Contributions of all kinds are very welcome.

If you have questions or want to discuss alchemlyb please post in the alchemlyb Discussions.

If you have bug reports or feature requests then please get in touch with us through the Issue Tracker.

We also welcome code contributions: have a look at our Developer Guide. Open an issue with the proposed fix or
change in the Issue Tracker and submit a pull request against the alchemistry/alchemlyb GitHub repository.

3.1 Installing alchemlyb

alchemlyb is available via the pip and conda package managers and can easily be installed with all its dependencies.
Alternatively, it can also be directly installed from source

3.1.1 conda installation

The easiest way to keep track of all dependencies is to install alchemlyb as a conda package from the conda-forge
(alchemlyb) channel

conda install -c conda-forge alchemlyb

You can later update your installation with

conda update -c conda-forge alchemlyb

3.1.2 pip installation

Install via pip from PyPi (alchemlyb)

pip install alchemlyb

Update with

pip install --update alchemlyb

7

https://github.com/alchemistry/alchemlyb/discussions
https://github.com/alchemistry/alchemlyb/issues
https://github.com/alchemistry/alchemlyb/wiki/Developer-Guide
https://github.com/alchemistry/alchemlyb/issues
https://github.com/alchemistry/alchemlyb
https://conda.anaconda.org/conda-forge
https://anaconda.org/conda-forge/alchemlyb
https://anaconda.org/conda-forge/alchemlyb
https://anaconda.org/conda-forge/alchemlyb
https://conda.io/
https://anaconda.org/conda-forge/alchemlyb
https://anaconda.org/conda-forge/alchemlyb
https://pypi.org/project/alchemlyb/

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.1.3 Installing from source

To install from source, first clone the source code repository https://github.com/alchemistry/alchemlyb from GitHub
with

git clone https://github.com/alchemistry/alchemlyb.git

and then install with pip

cd alchemlyb
pip install .

3.2 Parsing data files

alchemlyb features parsing submodules for getting raw data from different software packages into common data struc-
tures that can be used directly by its subsamplers and estimators. Each submodule features at least two functions,
namely:

extract_dHdl()
Extract the gradient of the Hamiltonian, 𝑑𝐻

𝑑𝜆 , for each timestep of the sampled state. Required input for TI-based
estimators.

extract_u_nk()
Extract reduced potentials, 𝑢𝑛𝑘, for each timestep of the sampled state and all neighboring states. Required input
for FEP-based estimators.

extract()
Extract both reduced potentials and the gradient of the Hamiltonian, 𝑢𝑛𝑘 and 𝑑𝐻

𝑑𝜆 , in the form of a dictionary
'dHdl': Series, 'u_nk': DataFrame. Required input for FEP-based estimators and TI-based estima-
tors.

These functions have a consistent interface across all submodules, often taking a single file as input and any additional
parameters required for giving either dHdl or u_nk in standard form.

3.2.1 Standard forms of raw data

All components of alchemlyb are designed to work together well with minimal work on the part of the user. To make
this possible, the library deals in a common data structure for each dHdl and u_nk, and all parsers yield these quantities
in these standard forms. The common data structure is a pandas.DataFrame. Normally, it should be sufficient to just
pass the dHdl and u_nk dataframes from one alchemlyb function to the next. However, being a DataFrame provides
enormous flexibility if the data need to be reorganized or transformed because of the powerful tools that pandas makes
available to manipulate these data structures.

Warning: When alchemlyb dataframes are transformed with standard pandas functions (such as pandas.
concat()), care needs to be taken to ensure that alchemlyb metadata, which are stored in the dataframe, are
maintained and propagated during processing of alchemlyb dataframes. See metadata propagation for how do
work with dataframes safely in alchemlyb.

The metadata (such as the unit of the energy and temperature) are stored in pandas.DataFrame.attrs, a dict.
Functions in alchemlyb are aware of these metadata but working with the data using pandas requires some care due
to shortcomings in how pandas currently handles metadata (see issue pandas-dev/pandas#28283).

8 Chapter 3. Getting involved

https://github.com/alchemistry/alchemlyb
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://github.com/pandas-dev/pandas/issues/28283

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Serialisation

Alchemlyb data structures (dHdl and u_nk) can be serialized as dataframes and made persistent. We use the parquet
format for serializing (writing) to a file and de-serializing (reading) from a parquet file.

For serialization we simply use the pandas.DataFrame.to_parquet() method of a pandas.DataFrame. For load-
ing alchemlyb data we provide the alchemlyb.parsing.parquet.extract_dHdl() and alchemlyb.parsing.
parquet.extract_u_nk() functions as shown in the example:

from alchemlyb.parsing.parquet import extract_dHdl, extract_u_nk
import pandas as pd

u_nk.to_parquet(path='u_nk.parquet', index=True)
dHdl.to_parquet(path='dHdl.parquet', index=True)

new_u_nk = extract_u_nk('u_nk.parquet', T=300)
new_dHdl = extract_dHdl('dHdl.parquet', T=300)

Note: Serialization of pandas.DataFrame to parquet file is only allowed for pandas>=2, whereas the deserialization
is permitted for any pandas version.

dHdl standard form

All parsers yielding dHdl gradients return this as a pandas.DataFrame with the following structure:

coul vdw
time coul-lambda vdw-lambda

0.0 0.0 0.0 10.264125 -0.522539
1.0 0.0 0.0 9.214077 -2.492852
2.0 0.0 0.0 -8.527066 -0.405814
3.0 0.0 0.0 11.544028 -0.358754

.....
97.0 1.0 1.0 -10.681702 -18.603644
98.0 1.0 1.0 29.518990 -4.955664
99 0 1.0 1.0 -3.833667 -0.836967
100.0 1.0 1.0 -12.835707 0.786278

This is a multi-index DataFrame, giving time for each sample as the outermost index, and the value of each 𝜆 from
which the sample came as subsequent indexes. The columns of the DataFrame give the value of 𝑑𝐻

𝑑𝜆 with respect to
each of these separate 𝜆 parameters.

For datasets that sample with only a single 𝜆 parameter, then the DataFrame will feature only a single column perhaps
like:

fep
time fep-lambda

0.0 0.0 10.264125
1.0 0.0 9.214077
2.0 0.0 -8.527066
3.0 0.0 11.544028

.....
97.0 1.0 -10.681702

(continues on next page)

3.2. Parsing data files 9

https://pandas.pydata.org/docs/user_guide/io.html#io-parquet
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

98.0 1.0 29.518990
99 0 1.0 -3.833667
100.0 1.0 -12.835707

u_nk standard form

All parsers yielding u_nk reduced potentials return this as a pandas.DataFrame with the following structure:

(0.0, 0.0) (0.25, 0.0) (0.5, 0.0) ... (1.0, 1.0)
time coul-lambda vdw-lambda

0.0 0.0 0.0 -22144.50 -22144.24 -22143.98 -21984.81
1.0 0.0 0.0 -21985.24 -21985.10 -21984.96 -22124.26
2.0 0.0 0.0 -22124.58 -22124.47 -22124.37 -22230.61
3.0 1.0 0.1 -22230.65 -22230.63 -22230.62 -22083.04

.....
97.0 1.0 1.0 -22082.29 -22082.54 -22082.79 -22017.42
98.0 1.0 1.0 -22087.57 -22087.76 -22087.94 -22135.15
99.0 1.0 1.0 -22016.69 -22016.93 -22017.17 -22057.68
100.0 1.0 1.0 -22137.19 -22136.51 -22135.83 -22101.26

This is a multi-index DataFrame, giving time for each sample as the outermost index, and the value of each 𝜆 from
which the sample came as subsequent indexes. The columns of the DataFrame give the value of 𝑢𝑛𝑘 for each set of 𝜆
parameters values were recorded for. Column labels are the values of the 𝜆 parameters as a tuple in the same order as
they appear in the multi-index.

For datasets that sample only a single 𝜆 parameter, then the DataFrame will feature only a single index in addition to
time, with the values of 𝜆 for which reduced potentials were recorded given as column labels:

0.0 0.25 0.5 ... 1.0
time fep-lambda

0.0 0.0 -22144.50 -22144.24 -22143.98 -21984.81
1.0 0.0 -21985.24 -21985.10 -21984.96 -22124.26
2.0 0.0 -22124.58 -22124.47 -22124.37 -22230.61
3.0 1.0 -22230.65 -22230.63 -22230.62 -22083.04

.....
97.0 1.0 -22082.29 -22082.54 -22082.79 -22017.42
98.0 1.0 -22087.57 -22087.76 -22087.94 -22135.15
99.0 1.0 -22016.69 -22016.93 -22017.17 -22057.68
100.0 1.0 -22137.19 -22136.51 -22135.83 -22101.26

A note on units

alchemlyb reads input files in native energy units and converts them to a common unit, the energy measured in 𝑘𝐵𝑇 ,
where 𝑘𝐵 is Boltzmann’s constant and 𝑇 is the thermodynamic absolute temperature in Kelvin. Therefore, all parsers
require specification of 𝑇 .

Throughout alchemlyb, the metadata, such as the energy unit and temperature of the dataset, are stored as a dictionary
in pandas.DataFrame.attrs metadata attribute. The keys of the attrs dictionary are

"temperature"
the temperature at which the simulation was performed, in Kelvin

10 Chapter 3. Getting involved

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://physics.nist.gov/cgi-bin/cuu/Value?k
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

"energy_unit"
the unit of energy, such as “kT”, “kcal/mol”, “kJ/mol” (as defined in units)

Conversion functions in alchemlyb.postprocessing and elsewhere may use the metadata for unit conversion and
other transformations.

As the following example shows, after parsing of data files, the energy unit is “kT”, i.e., the 𝜕𝐻/𝜕𝜆 timeseries is
measured in multiples of 𝑘𝐵𝑇 per lambda step:

>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> dataset = load_benzene()
>>> dhdl = extract_dHdl(dataset['data']['Coulomb'][0], 310)
>>> dhdl.attrs['temperature']
310
>>> dhdl.attrs['energy_unit']
'kT'

Also, although parsers will extract timestamps from input data, these are taken as-is and the library does not have any
awareness of units for these. Keep this in mind when doing, e.g. subsampling.

Metadata Propagation

The metadata is stored in pandas.DataFrame.attrs. Though common pandas functions can safely propagate the
metadata, the metadata might get lost during some operations such as concatenation (pandas-dev/pandas#28283).
alchemlyb.concat() is provided to replace pandas.concat() allowing the safe propagation of metadata.

>>> import alchemlyb
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> dataset = load_benzene().data
>>> dhdl_coul = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in dataset['Coulomb
→˓']])
>>> dhdl_coul.attrs
{'temperature': 300, 'energy_unit': 'kT'}

alchemlyb.concat(objs, *args, **kwargs)
Concatenate pandas objects while persevering the attrs.

Concatenate pandas objects along a particular axis with optional set logic along the other axes. If all pandas
objects have the same attrs attribute, the new pandas objects would have this attrs attribute. A ValueError would
be raised if any pandas object has a different attrs.

Parameters
objs – A sequence or mapping of Series or DataFrame objects.

Returns
Concatenated pandas object.

Return type
DataFrame

Raises
ValueError – If not all pandas objects have the same attrs.

See also:

pandas.concat

3.2. Parsing data files 11

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://github.com/pandas-dev/pandas/issues/28283
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

New in version 0.5.0.

Changed in version 1.0.1: When input is single dataframe, it will be sent out directly.

Although all functions in alchemlyb will safely propagate the metadata, if the user is interested in writing custom data
manipulation functions, a decorator alchemlyb.pass_attrs() could be used to pass the metadata from the input
data frame (first positional argument) to the output dataframe to ensure safe propagation of metadata.

>>> from alchemlyb import pass_attrs
>>> @pass_attrs
>>> def manipulation(dataframes, *args, **kwargs):
>>> return func(dataframes, *args, **kwargs)

alchemlyb.pass_attrs(func)
Pass the attrs from the first positional argument to the output dataframe.

New in version 0.5.0.

3.2.2 Parsers by software package

alchemlyb tries to provide parser functions for as many simulation packages as possible. See the documentation for
the package you are using for more details on parser usage, including the assumptions parsers make and suggestions
for how output data should be structured for ease of use:

gmx Parsers for extracting alchemical data from Gromacs out-
put files.

amber Parsers for extracting alchemical data from AMBER out-
put files.

namd Parsers for extracting alchemical data from NAMD out-
put files.

gomc Parsers for extracting alchemical data from GOMC out-
put files.

parquet

Gromacs parsing

Parsers for extracting alchemical data from Gromacs output files.

The parsers featured in this module are constructed to properly parse XVG files containing Hamiltonian differences (for
obtaining reduced potentials, 𝑢𝑛𝑘) and/or Hamiltonian derivatives (for obtaining gradients, 𝑑𝐻

𝑑𝜆). To produce such a file
from an existing EDR energy file, use gmx energy -f <.edr> -odh dhdl.xvg with your installation of Gromacs.

If you wish to use FEP-based estimators such as MBAR that require reduced potentials for all lambda states in the
alchemical leg, you will need to use these MDP options:

calc-lambda-neighbors = -1 ; calculate Delta H values for all other lambda windows
dhdl-print-energy = potential ; total potential energy of system included

In addition, the full set of lambda states for the alchemical leg should be explicitly specified in the fep-lambdas option
(or coul-lambdas, vdw-lambdas, etc.), since this is what Gromacs uses to determine what lambda values to calculate
∆𝐻 values for.

To use TI-based estimators that require gradients, you will need to include these options:

12 Chapter 3. Getting involved

http://www.gromacs.org/
http://ambermd.org
http://www.ks.uiuc.edu/Research/namd/
http://gomc.eng.wayne.edu/
http://www.gromacs.org/
http://www.gromacs.org/

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

dhdl-derivatives = yes ; write derivatives of Hamiltonian with respect to lambda

Additionally, the parsers can properly parse XVG files (containing Hamiltonian differences and/or Hamiltonian deriva-
tives) produced during expanded ensemble simulations. To produce such a file during the simulation, use gmx mdrun
-deffnm <name> -dhdl dhdl.xvgwith your installation of Gromacs. To run an expanded ensemble simulation you
will need to use the following MDP option:

free_energy = expanded ; turns on expanded ensemble simulation, lambda state␣
→˓becomes a dynamic variable

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.gmx.extract_dHdl(xvg, T, filter=True)
Return gradients dH/dl from a Hamiltonian differences XVG file.

Parameters

• xvg (str) – Path to XVG file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

• filter (bool) – Filter out the lines that cannot be parsed. Such as rows with incorrect
number of Columns and incorrectly formatted numbers (e.g. 123.45.67, nan or -).

Returns
dH/dl – dH/dl as a function of time for this lambda window.

Return type
Series

Note: Previous versions of alchemlyb (<0.5.0) used the GROMACS value of the molar gas constant of 𝑅 =
8.3144621 × 103 kJ · mol−1 · K−1 instead of the scipy value scipy.constants.R in scipy.constants (see
alchemlyb.postprocessors.units). The relative difference between the two values is 6 × 10−8.

Therefore, results in 𝑘𝑇 for GROMACS data will differ between alchemlyb 0.5.0 and previous versions; the
relative difference is on the order of 10−7 for typical cases.

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine. This leads to slightly different results for GROMACS input compared to previous versions
of alchemlyb.

Changed in version 0.7.0: The keyword filter is implemented to ignore the line that cannot be parsed and is turned
on by default.

alchemlyb.parsing.gmx.extract_u_nk(xvg, T, filter=True)
Return reduced potentials u_nk from a Hamiltonian differences XVG file.

Parameters

• xvg (str) – Path to XVG file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

• filter (bool) – Filter out the lines that cannot be parsed. Such as rows with incorrect
number of Columns and incorrectly formatted numbers (e.g. 123.45.67, nan or -).

3.2. Parsing data files 13

http://www.gromacs.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://manual.gromacs.org/documentation/2019/reference-manual/definitions.html
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Returns
u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type
DataFrame

Note: Previous versions of alchemlyb (<0.5.0) used the GROMACS value of the molar gas constant of 𝑅 =
8.3144621 × 103 kJ · mol−1 · K−1 instead of the scipy value scipy.constants.R in scipy.constants (see
alchemlyb.postprocessors.units). The relative difference between the two values is 6 × 10−8.

Therefore, results in 𝑘𝑇 for GROMACS data will differ between alchemlyb 0.5.0 and previous versions; the
relative difference is on the order of 10−7 for typical cases.

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine. This leads to slightly different results for GROMACS input compared to previous versions
of alchemlyb.

Changed in version 0.7.0: The keyword filter is implemented to ignore the line that cannot be parsed and is turned
on by default.

alchemlyb.parsing.gmx.extract(xvg, T, filter=True)
Return reduced potentials u_nk and gradients dH/dl from a Hamiltonian differences XVG file.

Parameters

• xvg (str) – Path to XVG file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

• filter (bool) – Filter out the lines that cannot be parsed. Such as rows with incorrect
number of Columns and incorrectly formatted numbers (e.g. 123.45.67, nan or -).

Returns
A dictionary with keys of ‘u_nk’, which is a pandas DataFrame of potential energy for each
alchemical state (k) for each frame (n), and ‘dHdl’, which is a Series of dH/dl as a function of
time for this lambda window.

Return type
Dict

New in version 1.0.0.

Amber parsing

Parsers for extracting alchemical data from AMBER output files.

Some of the file parsing parts are adapted from alchemical-analysis.

Changed in version 1.0.0: Now raises ValueError when an invalid file is given to the parser. Now raises ValueError
when inconsistency in MBAR states/data is found.

The parsers featured in this module are constructed to properly parse Amber MD output files containing derivatives of
the Hamiltonian and FEP (BAR/MBAR) data.

14 Chapter 3. Getting involved

https://manual.gromacs.org/documentation/2019/reference-manual/definitions.html
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://ambermd.org
https://github.com/MobleyLab/alchemical-analysis
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
http://ambermd.org/

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.amber.extract_dHdl(outfile, T)
Return gradients dH/dl from AMBER TI outputfile.

Parameters

• outfile (str) – Path to AMBER .out file to extract data from.

• T (float) – Temperature in Kelvin at which the simulations were performed

Returns
dH/dl – dH/dl as a function of time for this lambda window.

Return type
Series

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine.

alchemlyb.parsing.amber.extract_u_nk(outfile, T)
Return reduced potentials u_nk from AMBER outputfile.

Parameters

• outfile (str) – Path to AMBER .out file to extract data from.

• T (float) – Temperature in Kelvin at which the simulations were performed; needed to
generated the reduced potential (in units of kT)

Returns
u_nk – Reduced potential for each alchemical state (k) for each frame (n).

Return type
DataFrame

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine.

alchemlyb.parsing.amber.extract(outfile, T)
Return reduced potentials u_nk and gradients dH/dl from AMBER outputfile.

Parameters

• outfile (str) – Path to AMBER .out file to extract data from.

• T (float) – Temperature in Kelvin at which the simulations were performed; needed to
generated the reduced potential (in units of kT)

Returns
A dictionary with keys of ‘u_nk’, which is a pandas DataFrame of reduced potentials for each
alchemical state (k) for each frame (n), and ‘dHdl’, which is a Series of dH/dl as a function of
time for this lambda window.

Return type
Dict

New in version 1.0.0.

3.2. Parsing data files 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

NAMD parsing

Parsers for extracting alchemical data from NAMD output files.

The parsers featured in this module are constructed to properly parse NAMD .fepout output files containing deriva-
tives of the Hamiltonian and FEP (BAR) data. See the NAMD documentation for the theoretical backdrop and imple-
mentation details.

If you wish to use BAR on FEP data, be sure to provide the .fepout file from both the forward and reverse transfor-
mations.

After calling extract_u_nk() on the forward and reverse work values, these dataframes can be combined into one:

replace zeroes in initial dataframe with nan
u_nk_fwd.replace(0, np.nan, inplace=True)
replace the nan values with the reverse dataframe --
this should not overwrite any of the fwd work values
u_nk_fwd[u_nk_fwd.isnull()] = u_nk_rev
replace remaining nan values back to zero
u_nk_fwd.replace(np.nan, 0, inplace=True)
sort final dataframe by `fep-lambda` (as opposed to `timestep`)
u_nk = u_nk_fwd.sort_index(level=u_nk_fwd.index.names[1:])

The fep-lambda index states at which lambda this particular frame was sampled, whereas the columns are the evalu-
ations of the Hamiltonian (or the potential energy U) at other lambdas (sometimes called “foreign lambdas”).

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.namd.extract_u_nk(fep_files, T)
Return reduced potentials u_nk from NAMD fepout file(s).

Parameters

• fep_file (str or list of str) – Path to fepout file(s) to extract data from. These are
sorted by filename, not including the path, prior to processing, using natural-sort. This way,
filenames including numbers without leading zeros are handled intuitively.

Windows may be split across files, or more than one window may be present in a given file.
Windows without footer lines (which may be in a different file than the respective header
lines) will raise an error. This means that while windows may have been interrupted and
restarted, they must be complete. Lambda values are expected to increase or decrease mono-
tonically, and match between header and footer of each window.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns
u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type
DataFrame

Note: If the number of forward and backward samples in a given window are different, the extra sample(s) will
be discarded. This is typically zero or one sample.

16 Chapter 3. Getting involved

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node60.html
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node61.html
https://www.ks.uiuc.edu/Research/namd/2.13/ug/node61.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine.

Changed in version 0.6.0: Support for Interleaved Double-Wide Sampling files added, with various robustness
checks.

fep_files can now be a list of filenames.

alchemlyb.parsing.namd.extract(fep_files, T)
Return reduced potentials u_nk from NAMD fepout file(s).

Parameters

• fep_file (str or list of str) – Path to fepout file(s) to extract data from. These are
sorted by filename, not including the path, prior to processing, using natural-sort. This way,
filenames including numbers without leading zeros are handled intuitively.

Windows may be split across files, or more than one window may be present in a given file.
Windows without footer lines (which may be in a different file than the respective header
lines) will raise an error. This means that while windows may have been interrupted and
restarted, they must be complete. Lambda values are expected to increase or decrease mono-
tonically, and match between header and footer of each window.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns
A dictionary with keys of ‘u_nk’, which is a pandas DataFrame of potential energy for each
alchemical state (k) for each frame (n).

Return type
Dict

Note: If the number of forward and backward samples in a given window are different, the extra sample(s) will
be discarded. This is typically zero or one sample.

New in version 1.0.0.

GOMC parsing

Parsers for extracting alchemical data from GOMC output files.

The parsers featured in this module are constructed to properly parse GOMC free energy output files, containing the
Hamiltonian derivatives (𝑑𝐻𝑑𝜆) for TI-based estimators and Hamiltonian differences (∆𝐻 for all lambda states in the
alchemical leg) for FEP-based estimators (BAR/MBAR).

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.gomc.extract_dHdl(filename, T)
Return gradients dH/dl from a Hamiltonian differences free energy file.

Parameters

• filename (str) – Path to free energy file to extract data from.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

3.2. Parsing data files 17

https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://gomc.eng.wayne.edu/
http://gomc.eng.wayne.edu/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Returns
dH/dl – dH/dl as a function of step for this lambda window.

Return type
Series

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine.

alchemlyb.parsing.gomc.extract_u_nk(filename, T)
Return reduced potentials u_nk from a Hamiltonian differences dat file.

Parameters

• filename (str) – Path to free energy file to extract data from.

• T (float) – Temperature in Kelvin at which the simulation was sampled.

Returns
u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type
DataFrame

Changed in version 0.5.0: The scipy.constants is used for parsers instead of the constants used by the corre-
sponding MD engine.

alchemlyb.parsing.gomc.extract(filename, T)
Return reduced potentials u_nk and gradients dH/dl from a Hamiltonian differences free energy file.

Parameters

• xvg (str) – Path to free energy file to extract data from.

• T (float) – Temperature in Kelvin the simulations sampled.

• filter (bool) – Filter out the lines that cannot be parsed. Such as rows with incorrect
number of Columns and incorrectly formatted numbers (e.g. 123.45.67, nan or -).

Returns
A dictionary with keys of ‘u_nk’, which is a pandas DataFrame of potential energy for each
alchemical state (k) for each frame (n), and ‘dHdl’, which is a Series of dH/dl as a function of
time for this lambda window.

Return type
Dict

New in version 1.0.0.

API Reference

This submodule includes these parsing functions:

alchemlyb.parsing.parquet.extract_u_nk(path, T)
Return reduced potentials u_nk (unit: kT) from a pandas parquet file.

The parquet file should be serialised from the dataframe output from any parser with command (u_nk_df.
to_parquet(path=path, index=True)).

Parameters

• path (str) – Path to parquet file to extract dataframe from.

• T (float) – Temperature in Kelvin of the simulations.

18 Chapter 3. Getting involved

https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Returns
u_nk – Potential energy for each alchemical state (k) for each frame (n).

Return type
DataFrame

Note: pyarraw serializers would handle the float or string column name fine but will convert multi-lambda
column name from (0.0, 0.0) to “(‘0.0’, ‘0.0’)”. This parser will restore the correct column name. Also parquet
serialisation doesn’t preserve the pandas.DataFrame.attrs. So the temperature is assigned in this function.

New in version 2.1.0.

alchemlyb.parsing.parquet.extract_dHdl(path, T)
Return gradients dH/dl (unit: kT) from a pandas parquet file.

The parquet file should be serialised from the dataframe output from any parser with command
(dHdl_df.to_parquet(path=path, index=True)).

Parameters

• path (str) – Path to parquet file to extract dataframe from.

• T (float) – Temperature in Kelvin the simulations sampled.

Returns
dH/dl – dH/dl as a function of time for this lambda window.

Return type
DataFrame

Note: Parquet serialisation doesn’t preserve the pandas.DataFrame.attrs. So the temperature is assigned
in this function.

New in version 2.1.0.

3.3 Preprocessing datasets

It is often the case that some initial pre-processing of raw datasets are desirable before feeding these to an estimator.
alchemlyb features some commonly-used pre-processing tools as a convenience. These are featured in the following
submodules:

subsampling Functions for subsampling datasets.

3.3.1 Subsampling

Functions for subsampling datasets.

The functions featured in this module can be used to easily subsample either dHdl or u_nk datasets to give less correlated
timeseries.

3.3. Preprocessing datasets 19

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

High-level functions

Two high-level functions decorrelate_u_nk() and decorrelate_dhdl() can be used to preprocess the dHdl or
u_nk in an automatic fashion. The following code removes an initial “burnin” period and decorrelates the data.

>>> from alchemlyb.parsing.gmx import extract_u_nk, extract_dHdl
>>> from alchemlyb.preprocessing.subsampling import (decorrelate_u_nk,
>>> decorrelate_dhdl)
>>> bz = load_benzene().data
>>> u_nk = extract_u_nk(bz['Coulomb'], T=300)
>>> decorrelated_u_nk = decorrelate_u_nk(u_nk, method='dhdl',
>>> remove_burnin=True)
>>> dhdl = extract_dHdl(bz['Coulomb'], T=300)
>>> decorrelated_dhdl = decorrelate_dhdl(dhdl, remove_burnin=True)

Low-level functions

To decorrelate the data, in addition to the dataframe that contains the dHdl or u_nk, a pandas.Series is needed for
the autocorrection analysis. The series could be generated with u_nk2series() or dhdl2series() and feed into
statistical_inefficiency() or equilibrium_detection().

>>> from alchemlyb.parsing.gmx import extract_u_nk, extract_dHdl
>>> from alchemlyb.preprocessing.subsampling import (u_nk2series,
>>> dhdl2series, statistical_inefficiency, equilibrium_detection)
>>> bz = load_benzene().data
>>> u_nk = extract_u_nk(bz['Coulomb'], T=300)
>>> u_nk_series = u_nk2series(u_nk, method='dE')
>>> decorrelate_u_nk = statistical_inefficiency(u_nk, series=u_nk_series)
>>> decorrelate_u_nk = equilibrium_detection(u_nk, series=u_nk_series)
>>> dhdl = extract_dHdl(bz['Coulomb'], T=300)
>>> dhdl_series = dhdl2series(dhdl)
>>> decorrelate_dhdl = statistical_inefficiency(dhdl, series=dhdl_series)
>>> decorrelate_dhdl = equilibrium_detection(dhdl, series=dhdl_series)

API Reference

alchemlyb.preprocessing.subsampling.decorrelate_u_nk(df, method='dE', drop_duplicates=True,
sort=True, remove_burnin=False, **kwargs)

Subsample an u_nk DataFrame based on the selected method.

The method can be either ‘all’ (obtained as a sum over all energy components) or ‘dE’. In the latter case the
energy differences 𝑑𝐸𝑖,𝑖+1 (𝑑𝐸𝑖,𝑖−1 for the last lambda) are used. This is a wrapper function around the function
statistical_inefficiency() or equilibrium_detection().

Parameters

• df (DataFrame) – DataFrame to be subsampled according to the selected method.

• method ({'all', 'dE'}) – Method for decorrelating the data.

• drop_duplicates (bool) – Drop the duplicated lines based on time.

• sort (bool) – Sort the Dataframe based on the time column.

20 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

• remove_burnin (bool) – Whether to perform equilibrium detection (True) or just do sta-
tistical inefficiency (False).

New in version 1.0.0.

• **kwargs – Additional keyword arguments for statistical_inefficiency() or
equilibrium_detection().

Returns
df subsampled according to selected method.

Return type
DataFrame

Note: The default of True for drop_duplicates and sort should result in robust decorrelation but can lose data.

New in version 0.6.0.

Changed in version 1.0.0: Add the remove_burnin keyword to allow unequilibrated frames to be removed. Re-
name method value ‘dhdl_all’ to ‘all’ and deprecate the ‘dhdl’.

alchemlyb.preprocessing.subsampling.decorrelate_dhdl(df, drop_duplicates=True, sort=True,
remove_burnin=False, **kwargs)

Subsample a dhdl DataFrame. This is a wrapper function around the function statistical_inefficiency()
and equilibrium_detection().

Parameters

• df (DataFrame) – DataFrame to subsample according to the selected method.

• drop_duplicates (bool) – Drop the duplicated lines based on time.

• sort (bool) – Sort the Dataframe based on the time column.

• remove_burnin (bool) – Whether to perform equilibrium detection (True) or just do sta-
tistical inefficiency (False).

New in version 1.0.0.

• **kwargs – Additional keyword arguments for statistical_inefficiency() or
equilibrium_detection().

Returns
df subsampled.

Return type
DataFrame

Note: The default of True for drop_duplicates and sort should result in robust decorrelation but can loose data.

New in version 0.6.0.

Changed in version 1.0.0: Add the remove_burnin keyword to allow unequilibrated frames to be removed.

alchemlyb.preprocessing.subsampling.u_nk2series(df, method='dE')
Convert an u_nk DataFrame into a series based on the selected method for subsampling.

The method can be either ‘all’ (obtained as a sum over all energy components) or ‘dE’. In the latter case the
energy differences 𝑑𝐸𝑖,𝑖+1 (𝑑𝐸𝑖,𝑖−1 for the last lambda) are used.

Parameters

3.3. Preprocessing datasets 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

• df (DataFrame) – DataFrame to be converted according to the selected method.

• method ({'all', 'dE'}) – Method for converting the data.

Returns
series to be used as input for statistical_inefficiency() or equilibrium_detection().

Return type
Series

New in version 1.0.0.

Changed in version 2.0.1: The dE method computes the difference between the current lambda and the next
lambda (previous lambda for the last window), instead of using the next lambda or the previous lambda for the
last window.

alchemlyb.preprocessing.subsampling.dhdl2series(df, method='all')
Convert a dhdl DataFrame to a series for subsampling.

The series is generated by summing over all energy components (axis 1 of df), as for method='all' in
u_nk2series(). Commonly, df only contains a single energy component but in some cases (such as using
a split protocol in GROMACS), it can contain multiple columns for different energy terms.

Parameters

• df (DataFrame) – DataFrame to subsample according to the selected method.

• method ('all') – Only ‘all’ is available; the keyword is provided for compatibility with
u_nk2series().

Returns
series to be used as input for statistical_inefficiency() or equilibrium_detection().

Return type
Series

New in version 1.0.0.

alchemlyb.preprocessing.subsampling.slicing(df, lower=None, upper=None, step=None, force=False)
Subsample a DataFrame using simple slicing.

Parameters

• df (DataFrame) – DataFrame to subsample.

• lower (float) – Lower time to slice from.

• upper (float) – Upper time to slice to (inclusive).

• step (int) – Step between rows to slice by.

• force (bool) – Ignore checks that DataFrame is in proper form for expected behavior.

Returns
df subsampled.

Return type
DataFrame

Changed in version 1.0.1: The rows with NaN values are not dropped by default.

alchemlyb.preprocessing.subsampling.statistical_inefficiency(df, series=None, lower=None,
upper=None, step=None,
conservative=True,
drop_duplicates=False, sort=False)

22 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Subsample a DataFrame based on the calculated statistical inefficiency of a timeseries.

If series is None, then this function will behave the same as slicing().

Parameters

• df (DataFrame) – DataFrame to subsample according statistical inefficiency of series.

• series (Series) – Series to use for calculating statistical inefficiency. If None, no statistical
inefficiency-based subsampling will be performed.

• lower (float) – Lower bound to pre-slice series data from.

• upper (float) – Upper bound to pre-slice series to (inclusive).

• step (int) – Step between series items to pre-slice by.

• conservative (bool) – True use ceil(statistical_inefficiency) to slice the data
in uniform intervals (the default). False will sample at non-uniform intervals to closely
match the (fractional) statistical_inefficieny, as implemented in pymbar.timeseries.
subsample_correlated_data().

• drop_duplicates (bool) – Drop the duplicated lines based on time.

• sort (bool) – Sort the Dataframe based on the time column.

Returns
df subsampled according to subsampled series.

Return type
DataFrame

Warning: The series and the data to be sliced, df, need to have the same number of elements because
the statistical inefficiency is calculated based on the index of the series (and not an associated time). At the
moment there is no automatic conversion from a time to an index.

Note: For a non-integer statistical ineffciency 𝑔, the default value conservative=True will provide _fewer_
data points than allowed by 𝑔 and thus error estimates will be _higher_. For large numbers of data points
and converged free energies, the choice should not make a difference. For small numbers of data points,
conservative=True decreases a false sense of accuracy and is deemed the more careful and conservative
approach.

See also:

pymbar.timeseries.statistical_inefficiency
detailed background

pymbar.timeseries.subsample_correlated_data
used for subsampling

Changed in version 0.2.0: The conservative keyword was added and the method is now using pymbar.
timeseries.statistical_inefficiency(); previously, the statistical inefficiency was _rounded_ (instead
of ceil()) and thus one could end up with correlated data.

Changed in version 1.0.0: Fixed a bug that would effectively ignore the lower and step keywords when returning
the subsampled DataFrame object. See issue #198 for more details.

3.3. Preprocessing datasets 23

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsample_correlated_data
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsample_correlated_data
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.statistical_inefficiency
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsample_correlated_data
https://github.com/alchemistry/alchemlyb/issues/198

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

alchemlyb.preprocessing.subsampling.equilibrium_detection(df, series=None, lower=None,
upper=None, step=None,
drop_duplicates=False, sort=False)

Subsample a DataFrame using automated equilibrium detection on a timeseries.

This function uses the pymbar implementation of the simple automated equilibrium detection algorithm in
[Chodera2016].

If series is None, then this function will behave the same as slicing().

Parameters

• df (DataFrame) – DataFrame to subsample according to equilibrium detection on series.

• series (Series) – Series to detect equilibration on. If None, no equilibrium detection-
based subsampling will be performed.

• lower (float) – Lower bound to pre-slice series data from.

• upper (float) – Upper bound to pre-slice series to (inclusive).

• step (int) – Step between series items to pre-slice by.

• drop_duplicates (bool) – Drop the duplicated lines based on time.

• sort (bool) – Sort the Dataframe based on the time column.

Returns
df subsampled according to subsampled series.

Return type
DataFrame

Notes

Please cite [Chodera2016] when you use this function in published work.

See also:

pymbar.timeseries.detect_equilibration
detailed background

pymbar.timeseries.subsample_correlated_data
used for subsampling

Changed in version 1.0.0: Add the drop_duplicates and sort keyword to unify the behaviour between
statistical_inefficiency() or equilibrium_detection().

3.4 Using estimators to obtain free energies

Calculating free energy differences from raw alchemical data requires the use of some estimator. All estimators in
alchemlyb conform to a common design pattern, with a form similar to that of estimators found in scikit-learn. If you
have familiarity with the usage of estimators in scikit-learn, then working with estimators in alchemlyb should be
somewhat straightforward.

alchemlyb provides implementations of many commonly-used estimators, which come in two varieties: TI-based and
FEP-based.

24 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.detect_equilibration
https://pymbar.readthedocs.io/en/latest/timeseries.html#pymbar.timeseries.subsample_correlated_data
http://scikit-learn.org

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.4.1 TI-based estimators

TI-based estimators such as TI take as input dHdl gradients for the calculation of free energy differences. All TI-based
estimators integrate these gradients with respect to 𝜆, differing only in how they numerically perform this integration.

As a usage example, we’ll use TI to calculate the free energy of solvation of benzene in water. We’ll use the benzene-
in-water dataset from alchemtest.gmx:

>>> from alchemtest.gmx import load_benzene
>>> bz = load_benzene().data

and parse the datafiles separately for each alchemical leg using alchemlyb.parsing.gmx.extract_dHdl() to obtain
dHdl gradients:

>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> import pandas as pd

>>> dHdl_coul = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> dHdl_vdw = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])

We can now use the TI estimator to obtain the free energy differences between each 𝜆 window sampled. The fit()
method is used to perform the free energy estimate, given the gradient data:

>>> from alchemlyb.estimators import TI

>>> ti_coul = TI()
>>> ti_coul.fit(dHdl_coul)
TI(verbose=False)

we could also just call the `fit` method
directly, since it returns the `TI` object
>>> ti_vdw = TI().fit(dHdl_vdw)

The sum of the endpoint free energy differences will be the free energy of solvation for benzene in water. The free
energy differences (in units of 𝑘𝐵𝑇) between each 𝜆 window can be accessed via the delta_f_ attribute:

>>> ti_coul.delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 1.620328 2.573337 3.022170 3.089027
0.25 -1.620328 0.000000 0.953009 1.401842 1.468699
0.50 -2.573337 -0.953009 0.000000 0.448832 0.515690
0.75 -3.022170 -1.401842 -0.448832 0.000000 0.066857
1.00 -3.089027 -1.468699 -0.515690 -0.066857 0.000000

So we can get the endpoint differences (free energy difference between 𝜆 = 0 and 𝜆 = 1) of each with:

>>> ti_coul.delta_f_.loc[0.00, 1.00]
3.0890270218676896

>>> ti_vdw.delta_f_.loc[0.00, 1.00]
-3.0558175199846058

giving us a solvation free energy in units of 𝑘𝐵𝑇 for benzene of:

3.4. Using estimators to obtain free energies 25

https://alchemtest.readthedocs.io/en/latest/gmx.html#module-alchemtest.gmx

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

>>> ti_coul.delta_f_.loc[0.00, 1.00] + ti_vdw.delta_f_.loc[0.00, 1.00]
0.033209501883083803

In addition to the free energy differences, we also have access to the errors on these differences via the d_delta_f_
attribute:

>>> ti_coul.d_delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 0.009706 0.013058 0.015038 0.016362
0.25 0.009706 0.000000 0.008736 0.011486 0.013172
0.50 0.013058 0.008736 0.000000 0.007458 0.009858
0.75 0.015038 0.011486 0.007458 0.000000 0.006447
1.00 0.016362 0.013172 0.009858 0.006447 0.000000

List of TI-based estimators

TI([verbose]) Thermodynamic integration (TI).

TI

The TI estimator is a simple implementation of thermodynamic integration that uses the trapezoid rule for integrating
the space between

⟨︀
𝑑𝐻
𝑑𝜆

⟩︀
values for each 𝜆 sampled.

API Reference

class alchemlyb.estimators.TI(verbose=False)
Thermodynamic integration (TI).

Parameters
verbose (bool, optional) – Set to True if verbose debug output is desired.

delta_f_

The estimated dimensionless free energy difference between each state.

Type
DataFrame

d_delta_f_

The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type
DataFrame

states_

Lambda states for which free energy differences were obtained.

Type
list

dhdl

The estimated dhdl of each state.

26 Chapter 3. Getting involved

https://en.wikipedia.org/wiki/Thermodynamic_integration
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Type
DataFrame

Changed in version 1.0.0: delta_f_, d_delta_f_, states_ are view of the original object.

fit(dHdl)
Compute free energy differences between each state by integrating dHdl across lambda values.

Parameters
dHdl (DataFrame) – dHdl[n,k] is the potential energy gradient with respect to lambda for
each configuration n and lambda k.

separate_dhdl()

For transitions with multiple lambda, the attr:dhdl would return a DataFrame which gives the dHdl for
all the lambda states, regardless of whether it is perturbed or not. This function creates a list of pandas.
Series for each lambda, where each pandas.Series describes the potential energy gradient for the lamb-
das state that is perturbed.

Returns
dHdl_list – A list of pandas.Series such that dHdl_list[k] is the potential energy gra-
dient with respect to lambda for each configuration that lambda k is perturbed.

Return type
list

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

3.4. Using estimators to obtain free energies 27

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.4.2 FEP-based estimators

FEP-based estimators such as MBAR take as input u_nk reduced potentials for the calculation of free energy differences.
All FEP-based estimators make use of the overlap between distributions of these values for each sampled 𝜆, differing
in how they use this overlap information to give their free energy difference estimate.

As a usage example, we’ll use MBAR to calculate the free energy of solvation of benzene in water. We’ll use the benzene-
in-water dataset from alchemtest.gmx:

>>> from alchemtest.gmx import load_benzene
>>> bz = load_benzene().data

and parse the datafiles separately for each alchemical leg using alchemlyb.parsing.gmx.extract_u_nk() to obtain
u_nk reduced potentials:

>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> import pandas as pd

>>> u_nk_coul = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> u_nk_vdw = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['VDW']])

We can now use the MBAR estimator to obtain the free energy differences between each 𝜆 window sampled. The fit()
method is used to perform the free energy estimate, given the gradient data:

>>> from alchemlyb.estimators import MBAR

>>> mbar_coul = MBAR()
>>> mbar_coul.fit(u_nk_coul)
MBAR(initial_f_k=None, maximum_iterations=10000, method=({'method': 'hybr'},),

relative_tolerance=1e-07, verbose=False)

we could also just call the `fit` method
directly, since it returns the `MBAR` object
>>> mbar_vdw = MBAR().fit(u_nk_vdw)

The sum of the endpoint free energy differences will be the free energy of solvation for benzene in water. The free
energy differences (in units of 𝑘𝐵𝑇) between each 𝜆 window can be accessed via the delta_f_ attribute:

>>> mbar_coul.delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 1.619069 2.557990 2.986302 3.041156
0.25 -1.619069 0.000000 0.938921 1.367232 1.422086
0.50 -2.557990 -0.938921 0.000000 0.428311 0.483165
0.75 -2.986302 -1.367232 -0.428311 0.000000 0.054854
1.00 -3.041156 -1.422086 -0.483165 -0.054854 0.000000

So we can get the endpoint differences (free energy difference between 𝜆 = 0 and 𝜆 = 1) of each with:

>>> mbar_coul.delta_f_.loc[0.00, 1.00]
3.0411558818767954

>>> mbar_vdw.delta_f_.loc[0.00, 1.00]
-3.0067874666136074

giving us a solvation free energy in units of 𝑘𝐵𝑇 for benzene of:

28 Chapter 3. Getting involved

https://alchemtest.readthedocs.io/en/latest/gmx.html#module-alchemtest.gmx

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

>>> mbar_coul.delta_f_.loc[0.00, 1.00] + mbar_vdw.delta_f_.loc[0.00, 1.00]
0.034368415263188012

In addition to the free energy differences, we also have access to the errors on these differences via the d_delta_f_
attribute:

>>> mbar_coul.d_delta_f_
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 0.008802 0.014432 0.018097 0.020879
0.25 0.008802 0.000000 0.006642 0.011404 0.015143
0.50 0.014432 0.006642 0.000000 0.005362 0.009983
0.75 0.018097 0.011404 0.005362 0.000000 0.005133
1.00 0.020879 0.015143 0.009983 0.005133 0.000000

List of FEP-based estimators

MBAR([maximum_iterations, ...]) Multi-state Bennett acceptance ratio (MBAR).
BAR([maximum_iterations, ...]) Bennett acceptance ratio (BAR).

MBAR

The MBAR estimator is a light wrapper around the reference implementation of MBAR [Shirts2008] from pymbar
(pymbar.mbar.MBAR). As a generalization of BAR, it uses information from all sampled states to generate an estimate
for the free energy difference between each state.

API Reference

class alchemlyb.estimators.MBAR(maximum_iterations=10000, relative_tolerance=1e-07, initial_f_k=None,
method='robust', n_bootstraps=0, verbose=False)

Multi-state Bennett acceptance ratio (MBAR).

Parameters

• maximum_iterations (int, optional) – Set to limit the maximum number of iterations
performed.

• relative_tolerance (float, optional) – Set to determine the relative tolerance con-
vergence criteria.

• initial_f_k (np.ndarray, float, shape=(K), optional) – Set to the initial di-
mensionless free energies to use as a guess (default None, which sets all 𝑓𝑘 = 0).

• method (str, optional, default="robust") – The optimization routine to use. This
can be any of the methods available via scipy.optimize.minimize() or scipy.
optimize.root().

• n_bootstraps (int, optional) – Whether to use bootstrap to estimate uncertainty. 0
means use analytic error estimation. 50~200 is a reasonable range to do bootstrap.

• verbose (bool, optional) – Set to True if verbose debug output from pymbar is desired.

3.4. Using estimators to obtain free energies 29

https://pymbar.readthedocs.io/en/latest/mbar.html#pymbar.MBAR
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

delta_f_

The estimated dimensionless free energy difference between each state.

Type
DataFrame

d_delta_f_

The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type
DataFrame

theta_

The theta matrix.

Type
DataFrame

states_

Lambda states for which free energy differences were obtained.

Type
list

Notes

See [Shirts2008] for details of the derivation and cite the paper when using MBAR in published work.

See also:

pymbar.mbar.MBAR

Changed in version 1.0.0: delta_f_, d_delta_f_, states_ are view of the original object.

Changed in version 2.0.0: default value for method was changed from “hybr” to “robust”

Changed in version 2.1.0: n_bootstraps option added.

fit(u_nk)
Compute overlap matrix of reduced potentials using multi-state Bennett acceptance ratio.

Parameters
u_nk (DataFrame) – u_nk[n, k] is the reduced potential energy of uncorrelated configu-
ration n evaluated at state k.

property overlap_matrix

MBAR overlap matrix.

The estimated state overlap matrix 𝑂𝑖𝑗 is an estimate of the probability of observing a sample from state 𝑖
in state 𝑗.

The overlap_matrix is computed on-the-fly. Assign it to a variable if you plan to re-use it.

See also:

pymbar.mbar.MBAR.computeOverlap

get_params(deep=True)
Get parameters for this estimator.

30 Chapter 3. Getting involved

https://docs.python.org/3/library/stdtypes.html#list
https://pymbar.readthedocs.io/en/latest/mbar.html#pymbar.MBAR

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

Returns
self – Estimator instance.

Return type
estimator instance

BAR

The BAR estimator is a light wrapper around the implementation of the Bennett Acceptance Ratio (BAR) method
[Bennett1976] from pymbar (pymbar.mbar.BAR). It uses information from neighboring sampled states to generate an
estimate for the free energy difference between these state.

See also:

alchemlyb.estimators.MBAR

API Reference

class alchemlyb.estimators.BAR(maximum_iterations=10000, relative_tolerance=1e-07,
method='false-position', verbose=False)

Bennett acceptance ratio (BAR).

Parameters

• maximum_iterations (int, optional) – Set to limit the maximum number of iterations
performed.

• relative_tolerance (float, optional) – Set to determine the relative tolerance con-
vergence criteria.

• method (str, optional, default='false-position') – choice of method to solve
BAR nonlinear equations, one of ‘self-consistent-iteration’ or ‘false-position’ (default:
‘false-position’)

• verbose (bool, optional) – Set to True if verbose debug output is desired.

3.4. Using estimators to obtain free energies 31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

delta_f_

The estimated dimensionless free energy difference between each state.

Type
DataFrame

d_delta_f_

The estimated statistical uncertainty (one standard deviation) in dimensionless free energy differences.

Type
DataFrame

states_

Lambda states for which free energy differences were obtained.

Type
list

Notes

See [Bennett1976] for details of the derivation and cite the paper (together with [Shirts2008] for the Python
implementation in pymbar) when using BAR in published work.

When possible, use MBAR instead of BAR as it makes better use of the available data.

See also:

MBAR

Changed in version 1.0.0: delta_f_, d_delta_f_, states_ are view of the original object.

fit(u_nk)
Compute overlap matrix of reduced potentials using Bennett acceptance ratio.

Parameters
u_nk (DataFrame) – u_nk[n,k] is the reduced potential energy of uncorrelated configuration
n evaluated at state k.

get_params(deep=True)
Get parameters for this estimator.

Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.

Returns
params – Parameter names mapped to their values.

Return type
dict

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params (dict) – Estimator parameters.

32 Chapter 3. Getting involved

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Returns
self – Estimator instance.

Return type
estimator instance

3.5 Assessing convergence

For a result to be valid, we need to ensure that longer simulation time would not result in different results, i.e., that our
results are converged. The alchemlyb.convergence module provides functions to assess the convergence of free
energy estimates or other quantities.

3.5.1 Time Convergence

One way of determining the simulation end point is to compute and plot the forward and backward convergence of the
estimate using forward_backward_convergence() and plot_convergence() [Klimovich2015].

>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.visualisation import plot_convergence
>>> from alchemlyb.convergence import forward_backward_convergence

>>> bz = load_benzene().data
>>> data_list = [extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']]
>>> df = forward_backward_convergence(data_list, 'mbar')
>>> ax = plot_convergence(df)
>>> ax.figure.savefig('dF_t.pdf')

Will give a plot looks like this

3.5.2 Fractional equilibration time

Another way of assessing whether the simulation has converged is to check the energy files. In [Fan2021] (and
[Fan2020]), 𝑅𝑐 and 𝐴𝑐 are two criteria of checking the convergence. fwdrev_cumavg_Rc() takes a decorrelated
pandas.Series as input and gives the metric 𝑅𝑐, which is 0 for fully-equilibrated simulation and 1 for fully-
unequilibrated simulation.

>>> from alchemtest.gmx import load_ABFE
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> from alchemlyb.preprocessing import decorrelate_dhdl, dhdl2series
>>> from alchemlyb.convergence import fwdrev_cumavg_Rc
>>> from alchemlyb.visualisation import plot_convergence

>>> file = load_ABFE().data['ligand'][0]
>>> dhdl = extract_dHdl(file, T=300)
>>> decorrelated = decorrelate_dhdl(dhdl, remove_burnin=True)
>>> R_c, running_average = fwdrev_cumavg_Rc(dhdl2series(decorrelated), tol=2)
>>> print(R_c)
0.04
>>> ax = plot_convergence(running_average, final_error=2)
>>> ax.set_ylabel("$\partial H/\partial\lambda$ (in kT)")

3.5. Assessing convergence 33

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Fig. 1: A convergence plot of showing that the forward and backward has converged fully.

34 Chapter 3. Getting involved

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Will give a plot like this.

The A_c() on the other hand, takes in a list of decorrelated pandas.Series and gives a metric of how converged the
set is, where 0 fully-unequilibrated and 1.0 is fully-equilibrated.

>>> from alchemlyb.convergence import A_c
>>> dhdl_list = []
>>> for file in load_ABFE().data['ligand']:
>>> dhdl = extract_dHdl(file, T=300)
>>> decorrelated = decorrelate_dhdl(dhdl, remove_burnin=True)
>>> decorrelated = dhdl2series(decorrelated)
>>> dhdl_list.append(decorrelated)
>>> value = A_c(dhdl_list, tol=2)
0.7085

3.5. Assessing convergence 35

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.5.3 Convergence functions

Convergence functions are available from alchemlyb.convergence. Internally, they are imported from submodules,
as documented below.

convergence Functions for assessing convergence of free energy esti-
mates and raw data.

Convergence API Reference

Functions for assessing convergence of free energy estimates and raw data.

The alchemlyb.convergence.convergence module contains building blocks that perform a specific convergence
analysis. They typically operate on lists of raw data and either run estimators on these data sets to obtain free energies
as a function of the amount of data or they directly assess the convergence of the raw data.

Note: Read the original literature to learn the exact meaning of parameters and how to interpret the output of the
convergence analysis.

All convergence functions are located in this submodule but for convenience they are also made available from
alchemlyb.convergence, as shown here:

alchemlyb.convergence.forward_backward_convergence(df_list, estimator='MBAR', num=10, **kwargs)
Forward and backward convergence of the free energy estimate.

Generate the free energy estimate as a function of time in both directions, with the specified number of equally
spaced points in the time [Klimovich2015]. For example, setting num to 10 would give the forward convergence
which is the free energy estimate from the first 10%, 20%, 30%, . . . of the data. The Backward would give the
estimate from the last 10%, 20%, 30%, . . . of the data.

Parameters

• df_list (list) – List of DataFrame of either dHdl or u_nk.

• estimator ({'MBAR', 'BAR', 'TI'}) – Name of the estimators. See the important note below
on the use of “MBAR”.

Deprecated since version 1.0.0: Lower case input is also accepted until release 2.0.0.

• num (int) – The number of time points.

• kwargs (dict) – Keyword arguments to be passed to the estimator.

Returns

The DataFrame with convergence data.

Forward Forward_Error Backward Backward_Error data_fraction
0 3.016442 0.052748 3.065176 0.051036 0.1
1 3.078106 0.037170 3.078567 0.036640 0.2
2 3.072561 0.030186 3.047357 0.029775 0.3
3 3.048325 0.026070 3.057527 0.025743 0.4
4 3.049769 0.023359 3.037454 0.023001 0.5
5 3.034078 0.021260 3.040484 0.021075 0.6
6 3.043274 0.019642 3.032495 0.019517 0.7
7 3.035460 0.018340 3.036670 0.018261 0.8

(continues on next page)

36 Chapter 3. Getting involved

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

8 3.042032 0.017319 3.046597 0.017233 0.9
9 3.044149 0.016405 3.044385 0.016402 1.0

Return type
pandas.DataFrame

New in version 0.6.0.

Changed in version 1.0.0: The estimator accepts uppercase input. The default for using estimator='MBAR'
was changed from MBAR to AutoMBAR.

Changed in version 2.0.0: Use pymbar.MBAR instead of the AutoMBAR option.

alchemlyb.convergence.fwdrev_cumavg_Rc(series, precision=0.01, tol=2)
Generate the convergence criteria 𝑅𝑐 for a single simulation.

The input will be pandas.Series generated by decorrelate_u_nk() or decorrelate_dhdl().

The output will be the float 𝑅𝑐 [Fan2020] [Fan2021] and a pandas.DataFrame with the forward and backward
cumulative average at precision fractional increments, as described below.

𝑅𝑐 = 0 indicates that the system is well equilibrated right from the beginning while 𝑅𝑐 = 1 signifies that the
whole trajectory is not equilibrated.

Parameters

• series (pandas.Series) – The input energy array.

• precision (float) – The precision of the output 𝑅𝑐. To speed the calculation up, the data
has been block-averaged before doing the calculation, the size of the block is controlled by
the desired precision.

• tol (float) – Tolerance (or convergence threshold 𝜖 in [Fan2021]) in 𝑘𝑇 .

Returns

• float – Convergence time fraction 𝑅𝑐 [Fan2021]

• pandas.DataFrame –

The DataFrame with moving average.

Forward Backward data_fraction
0 3.016442 3.065176 0.1
1 3.078106 3.078567 0.2
2 3.072561 3.047357 0.3
3 3.048325 3.057527 0.4
4 3.049769 3.037454 0.5
5 3.034078 3.040484 0.6
6 3.043274 3.032495 0.7
7 3.035460 3.036670 0.8
8 3.042032 3.046597 0.9
9 3.044149 3.044385 1.0

3.5. Assessing convergence 37

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Notes

This function computes 𝑅𝑐 from equation 16 from [Fan2021]. The code is modified based on Shujie Fan’s
(@VOD555) work. Zhiyi Wu (@xiki-tempula) improved the performance of the original algorithm.

Please cite [Fan2021] when using this function.

See also:

A_c

New in version 1.0.0.

alchemlyb.convergence.A_c(series_list, precision=0.01, tol=2)
Generate the ensemble convergence criteria 𝐴𝑐 for a set of simulations.

The input is a list of pandas.Series generated by decorrelate_u_nk() or decorrelate_dhdl().

The output will the float 𝐴𝑐 [Fan2020] [Fan2021]. 𝐴𝑐 is a number between 0 and 1 that can be interpreted as the
ratio of the total equilibrated simulation time to the whole simulation time for a full set of simulations. 𝐴𝑐 = 1
means that all simulation time frames in all windows can be considered equilibrated, while 𝐴𝑐 = 0 indicates that
nothing is equilibrated.

Parameters

• series_list (list) – A list of pandas.Series energy array.

• precision (float) – The precision of the output 𝐴𝑐. To speed the calculation up, the data
has been block-averaged before doing the calculation, the size of the block is controlled by
the desired precision.

• tol (float) – Tolerance (or convergence threshold 𝜖 in [Fan2021]) in 𝑘𝑇 .

Returns
The area 𝐴𝑐 under curve for convergence time fraction.

Return type
float

Notes

This function computes 𝐴𝑐 from equation 18 from [Fan2021].

Please cite [Fan2021] when using this function.

See also:

fwdrev_cumavg_Rc

New in version 1.0.0.

3.6 Tools for postprocessing

Tools are available for postprocessing the dataframes.

38 Chapter 3. Getting involved

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397498/#FD16
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397498/#FD18

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.6.1 Unit Conversion

For all of the input and output dataframes (such as u_nk, dHdl, Estimator.delta_f_, Estimator.d_delta_f_),
the metadata is stored as pandas.DataFrame.attrs. The unit of the data can be converted to 𝑘𝑇 , kJ/mol or kcal/mol
via the functions to_kT(), to_kJmol(), to_kcalmol().

Unit Conversion Functions

units Unit conversion and constants

alchemlyb.postprocessors.units

Unit conversion and constants

Some examples are given here to illustrate how to use the unit converter functions to convert units.

>>> import pandas as pd
>>> import alchemlyb
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.estimators import MBAR
>>> from alchemlyb.postprocessors.units import to_kcalmol, to_kJmol, to_kT
>>> bz = load_benzene().data
>>> u_nk_coul = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> mbar_coul = MBAR().fit(u_nk_coul)
>>> mbar_coul.delta_f_

0.00 0.25 0.50 0.75 1.00
0.00 0.000000 1.619069 2.557990 2.986302 3.041156
0.25 -1.619069 0.000000 0.938921 1.367232 1.422086
0.50 -2.557990 -0.938921 0.000000 0.428311 0.483165
0.75 -2.986302 -1.367232 -0.428311 0.000000 0.054854
1.00 -3.041156 -1.422086 -0.483165 -0.054854 0.000000
>>> mbar_coul.delta_f_.attrs
{'temperature': 300, 'energy_unit': 'kT'}

The default unit is in 𝑘𝑇 , which could be changed to 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙.

>>> delta_f_ = to_kcalmol(mbar_coul.delta_f_)
>>> delta_f_

0.00 0.25 0.50 0.75 1.00
0.00 0.000000 0.965228 1.524977 1.780319 1.813021
0.25 -0.965228 0.000000 0.559749 0.815092 0.847794
0.50 -1.524977 -0.559749 0.000000 0.255343 0.288045
0.75 -1.780319 -0.815092 -0.255343 0.000000 0.032702
1.00 -1.813021 -0.847794 -0.288045 -0.032702 0.000000
>>> delta_f_.attrs
{'temperature': 300, 'energy_unit': 'kcal/mol'}

alchemlyb.postprocessors.units.to_kcalmol(df, T=None)
Convert the unit of a DataFrame to kcal/mol.

If temperature T is not provided, the DataFrame need to have attribute temperature and energy_unit. Otherwise,
the temperature of the output dateframe will be set accordingly.

3.6. Tools for postprocessing 39

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Parameters

• df (DataFrame) – DataFrame to convert unit.

• T (float) – Temperature (default: None).

Returns
df converted.

Return type
DataFrame

The unit could also be changed to 𝑘𝐽/𝑚𝑜𝑙.

>>> delta_f_ = to_kJmol(delta_f_)
>>> delta_f_

0.00 0.25 0.50 0.75 1.00
0.00 0.000000 4.038508 6.380495 7.448848 7.585673
0.25 -4.038508 0.000000 2.341987 3.410341 3.547165
0.50 -6.380495 -2.341987 0.000000 1.068354 1.205178
0.75 -7.448848 -3.410341 -1.068354 0.000000 0.136825
1.00 -7.585673 -3.547165 -1.205178 -0.136825 0.000000
>>> delta_f_.attrs
{'temperature': 300, 'energy_unit': 'kJ/mol'}

alchemlyb.postprocessors.units.to_kJmol(df, T=None)
Convert the unit of a DataFrame to kJ/mol.

If temperature T is not provided, the DataFrame need to have attribute temperature and energy_unit. Otherwise,
the temperature of the output dateframe will be set accordingly.

Parameters

• df (DataFrame) – DataFrame to convert unit.

• T (float) – Temperature (default: None).

Returns
df converted.

Return type
DataFrame

And change back to 𝑘𝑇 again.

>>> delta_f_ = to_kT(delta_f_)
0.00 0.25 0.50 0.75 1.00

0.00 0.000000 1.619069 2.557990 2.986302 3.041156
0.25 -1.619069 0.000000 0.938921 1.367232 1.422086
0.50 -2.557990 -0.938921 0.000000 0.428311 0.483165
0.75 -2.986302 -1.367232 -0.428311 0.000000 0.054854
1.00 -3.041156 -1.422086 -0.483165 -0.054854 0.000000
>>> delta_f_.attrs
{'temperature': 300, 'energy_unit': 'kT'}

alchemlyb.postprocessors.units.to_kT(df, T=None)
Convert the unit of a DataFrame to kT.

If temperature T is not provided, the DataFrame need to have attribute temperature and energy_unit. Otherwise,
the temperature of the output dateframe will be set accordingly.

40 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Parameters

• df (DataFrame) – DataFrame to convert unit.

• T (float) – Temperature (default: None).

Returns
df converted.

Return type
DataFrame

A dispatch table approach is also provided to return the relevant converter for every units.

alchemlyb.postprocessors.units.get_unit_converter(units)
Obtain the converter according to the unit string.

If units is ‘kT’, the to_kT converter is returned. If units is ‘kJ/mol’, the to_kJmol converter is returned. If units
is ‘kcal/mol’, the to_kcalmol converter is returned.

Parameters
units (str) – The unit that the function converts to.

Returns
converter

Return type
func

New in version 0.5.0.

3.6.2 Constants and auxiliary functions

The postprocessing functions can make use of the following auxiliary functions, which in turn may use constants defined
alchemlyb.postprocessors.units.

Scientific constants

Common scientific constants based on scipy.constants and are provided for use across alchemlyb.

alchemlyb.postprocessors.units.kJ2kcal = 0.2390057361376673

conversion factor from kJ to kcal, based on scipy.constants.calorie in scipy.constants

alchemlyb.postprocessors.units.R_kJmol = 0.008314462618

gas constant 𝑅 in kJ/(mol K), based on scipy.constants.R in scipy.constants

Unit conversion developer information

The function alchemlyb.postprocessors.units.get_unit_converter() provides the relevant converter for
unit conversion via a built-in dispatch table:

>>> from alchemlyb.postprocessors.units import get_unit_converter
>>> get_unit_converter('kT')
<function to_kT>
>>> get_unit_converter('kJ/mol')
<function to_kJmol>

(continues on next page)

3.6. Tools for postprocessing 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

>>> get_unit_converter('kcal/mol')
<function to_kcalmol>

For unit conversion to work, the dataframes must maintain the energy_unit and temperature metadata in pandas.
DataFrame.attrs as described under A note on units.

When implementing code then ensure that the metadata are maintained by using alchemlyb.concat() in place of
pandas.concat() and use the alchemlyb.pass_attrs() decorator to copy metadata from an input dataframe to
an output dataframe.

3.7 Visualisation of the results

It is quite often that the user want to visualise the results to gain confidence on the computed free energy. alchemlyb
provides various visualisation tools to help user to judge the estimate.

3.7.1 Plotting Functions

plot_mbar_overlap_matrix(matrix[, ...]) Plot the MBAR overlap matrix.
plot_ti_dhdl(dhdl_data[, labels, colors, ...]) Plot the dhdl of TI.
plot_dF_state(estimators[, labels, colors, ...]) Plot the dhdl of TI.
plot_convergence(dataframe[, units, ...]) Plot the forward and backward convergence.

Plot Overlap Matrix from MBAR

The function plot_mbar_overlap_matrix() allows the user to plot the overlap matrix from overlap_matrix. The
user can pass matplotlib.axes.Axes into the function to have the overlap maxtrix drawn on a specific axes. The
user could also specify a list of lambda states to be skipped when labelling the states.

Please check How to plot MBAR overlap matrix for usage.

API Reference

alchemlyb.visualisation.plot_mbar_overlap_matrix(matrix, skip_lambda_index=[], ax=None)
Plot the MBAR overlap matrix.

Parameters

• matrix (numpy.matrix) – DataFrame of the overlap matrix obtained from
overlap_matrix

• skip_lambda_index (List) – list of lambda indices to be omitted from plotting process.
Default: [].

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn on. If
ax=None, a new axes will be generated.

Returns
An axes with the overlap matrix drawn.

Return type
matplotlib.axes.Axes

42 Chapter 3. Getting involved

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Note: The code is taken and modified from Alchemical Analysis.

New in version 0.4.0.

Plot dhdl from TI

The function plot_ti_dhdl() allows the user to plot the dhdl from TI estimator. Several TI estimators could be
passed to the function to give a concerted picture of the whole alchemical transformation. When custom labels are
desirable, the user could pass a list of strings to the labels for labelling each alchemical transformation differently. The
color of each alchemical transformation could also be set by passing a list of color string to the colors. The unit in the
y axis could be labelled to other units by setting units, which by default is 𝑘𝑇 . The user can pass matplotlib.axes.
Axes into the function to have the dhdl drawn on a specific axes.

Please check How to plot TI dhdl for usage.

API Reference

alchemlyb.visualisation.plot_ti_dhdl(dhdl_data, labels=None, colors=None, units=None, ax=None)
Plot the dhdl of TI.

Parameters

• dhdl_data (TI or list) – One or more TI estimator, where the dhdl value will be taken from.

• labels (List) – list of labels for labelling all the alchemical transformations.

• colors (List) – list of colors for plotting all the alchemical transformations. Default: [‘r’,
‘g’, ‘#7F38EC’, ‘#9F000F’, ‘b’, ‘y’]

• units (str) – The unit of the estimate. The default is None, which is to use the unit in the
input. Setting this will change the output unit.

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn on. If
ax=None, a new axes will be generated.

Returns
An axes with the TI dhdl drawn.

Return type
matplotlib.axes.Axes

Note: The code is taken and modified from Alchemical Analysis.

Changed in version 1.0.0: If no units is given, the units in the input will be used.

Changed in version 0.5.0: The units will be used to change the underlying data instead of only changing the
figure legend.

New in version 0.4.0.

3.7. Visualisation of the results 43

https://github.com/MobleyLab/alchemical-analysis
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Plot dF states from multiple estimators

The function plot_dF_state() allows the user to plot and compare the free energy difference between states (“dF”)
from various kinds of estimators.

To compare the dF states of a single alchemical transformation among various estimators, the user can pass a list of
estimators. (e.g. estimators = [TI, BAR , MBAR])

To compare the dF states of a multiple alchemical transformations, results from the same estimators can be concate-
nated into a list, which is then bundled to to another list of different estimators. (e.g. estimators = [(TI, TI), (BAR ,
BAR), (MBAR , MBAR)])

The figure could be plotted in portrait or landscape mode by setting the orientation. nb is used to control the number
of dF states in one row. The user could pass a list of strings to labels to name the estimators or a list of strings to
colors to color the estimators differently. The unit in the y axis could be labelled to other units by setting units, which
by default is 𝑘𝑇 .

Please check How to plot dF states for a complete example.

API Reference

alchemlyb.visualisation.plot_dF_state(estimators, labels=None, colors=None, units=None,
orientation='portrait', nb=10)

Plot the dhdl of TI.

Parameters

• estimators (estimators or list) – One or more estimators, where the dhdl value will
be taken from. For more than one estimators with more than one alchemical transformation,
a list of list format is used.

• labels (List) – list of labels for labelling different estimators.

• colors (List) – list of colors for plotting different estimators.

• units (str) – The unit of the estimate. The default is None, which is to use the unit in the
input. Setting this will change the output unit.

• orientation (string) – The orientation of the figure. Can be portrait or landscape

• nb (int) – Maximum number of dF states in one row in the portrait mode

Returns
An Figure with the dF states drawn.

Return type
matplotlib.figure.Figure

Note: The code is taken and modified from Alchemical Analysis.

Changed in version 1.0.0: If no units is given, the units in the input will be used.

Changed in version 0.5.0: The units will be used to change the underlying data instead of only changing the
figure legend.

New in version 0.4.0.

44 Chapter 3. Getting involved

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Plot the Forward and Backward Convergence

The function plot_convergence() allows the user to visualise the convergence by plotting the free energy change
computed using the equilibrated snapshots between the proper target time frames. The data could be provided as
a Dataframe from alchemlyb.convergence.forward_backward_convergence() or provided explicitly in both
forward (data points are stored in forward and forward_error) and reverse (data points are stored in backward and
backward_error) directions.

The unit in the y axis could be labelled to other units by setting units, which by default is 𝑘𝑇 . The user can pass
matplotlib.axes.Axes into the function to have the convergence drawn on a specific axes.

Please check How to plot convergence for usage.

API Reference

alchemlyb.visualisation.plot_convergence(dataframe, units=None, final_error=None, ax=None)
Plot the forward and backward convergence.

The input could be the result from forward_backward_convergence() or fwdrev_cumavg_Rc().
The input should be a pandas.DataFrame which has column Forward, Backward and pandas.
DataFrame.attrs should compile with A note on units. The errorbar will be plotted if column
Forward_Error and Backward_Error is present.

Forward: A column of free energy estimate from the first X% of data, where optional Forward_Error
column is the corresponding error.

Backward: A column of free energy estimate from the last X% of data., where optional Back-
ward_Error column is the corresponding error.

final_error is the error of the final value and is shown as the error band around the final value. It can be provided
in case an estimate is available that is more appropriate than the default, which is the error of the last value in
Backward.

dataframe
[Dataframe] Output Dataframe has column Forward, Backward or optionally Forward_Error,
Backward_Error see plot_convergence.

units
[str] The unit of the estimate. The default is None, which is to use the unit in the input. Setting
this will change the output unit.

final_error
[float] The error of the final value in units. If not given, takes the last error in backward_error.

ax
[matplotlib.axes.Axes] Matplotlib axes object where the plot will be drawn on. If ax=None, a
new axes will be generated.

matplotlib.axes.Axes
An axes with the forward and backward convergence drawn.

The code is taken and modified from Alchemical Analysis.

Changed in version 1.0.0: Keyword arg final_error for plotting a horizontal error bar. The array input
has been deprecated. The units default to None which uses the units in the input.

Changed in version 0.6.0: data now takes in dataframe

New in version 0.4.0.

3.7. Visualisation of the results 45

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.7.2 Overlap Matrix of the MBAR

The accuracy of the MBAR estimator depends on the overlap between different lambda states. The overlap matrix from
the MBAR estimator could be plotted using plot_mbar_overlap_matrix() to check the degree of overlap. It is
recommended that there should be at least 0.03 [Klimovich2015] overlap between neighboring states.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.estimators import MBAR

>>> bz = load_benzene().data
>>> u_nk_coul = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> mbar_coul = MBAR()
>>> mbar_coul.fit(u_nk_coul)

>>> from alchemlyb.visualisation import plot_mbar_overlap_matrix
>>> ax = plot_mbar_overlap_matrix(mbar_coul.overlap_matrix)
>>> ax.figure.savefig('O_MBAR.pdf', bbox_inches='tight', pad_inches=0.0)

Will give a plot looks like this

Fig. 2: Overlap between the distributions of potential energy differences is essential for accurate free energy calculations
and can be quantified by computing the overlap matrix . Its elements are the probabilities of observing a sample from
state i (th row) in state j (th column).

3.7.3 dhdl Plot of the TI

In order for the TI estimator to work reliably, the change in the dhdl between lambda state 0 and lambda state 1 should
be adequately sampled. The function plot_ti_dhdl() can be used to assess the change of the dhdl across the lambda
states.

More than one TI estimators can be plotted together as well.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_dHdl
>>> from alchemlyb.estimators import TI

>>> bz = load_benzene().data
(continues on next page)

46 Chapter 3. Getting involved

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

>>> dHdl_coul = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> ti_coul = TI().fit(dHdl_coul)
>>> dHdl_vdw = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
>>> ti_vdw = TI().fit(dHdl_vdw)

>>> from alchemlyb.visualisation import plot_ti_dhdl
>>> ax = plot_ti_dhdl([ti_coul, ti_vdw], labels=['Coul', 'VDW'], colors=['r', 'g'])
>>> ax.figure.savefig('dhdl_TI.pdf')

Will give a plot looks like this

Fig. 3: A plot of 〈/〉 versus for thermodynamic integration, with filled areas indicating free energy estimates from the
trapezoid rule. Different components are shown in distinct colors: in red is the electrostatic component (indices 0–4),
while in green is the van der Waals component (indices 5–19). Color intensity alternates with increasing index.

3.7. Visualisation of the results 47

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.7.4 dF States Plots between Different estimators

Another way of assessing the quality of free energy estimate would be comparing the free energy difference between
adjacent lambda states (dF) using different estimators [Klimovich2015]. The function plot_dF_state() can be used,
for example, to compare the dF of both Coulombic and VDW transformations using TI, BAR and MBAR estimators.

>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk, extract_dHdl
>>> from alchemlyb.estimators import MBAR, TI, BAR
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from alchemlyb.visualisation.dF_state import plot_dF_state
>>> bz = load_benzene().data
>>> u_nk_coul = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
>>> dHdl_coul = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
>>> u_nk_vdw = alchemlyb.concat([extract_u_nk(xvg, T=300) for xvg in bz['VDW']])
>>> dHdl_vdw = alchemlyb.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])
>>> ti_coul = TI().fit(dHdl_coul)
>>> ti_vdw = TI().fit(dHdl_vdw)
>>> bar_coul = BAR().fit(u_nk_coul)
>>> bar_vdw = BAR().fit(u_nk_vdw)
>>> mbar_coul = MBAR().fit(u_nk_coul)
>>> mbar_vdw = MBAR().fit(u_nk_vdw)

>>> estimators = [(ti_coul, ti_vdw),
(bar_coul, bar_vdw),
(mbar_coul, mbar_vdw),]

>>> fig = plot_dF_state(estimators, orientation='portrait')
>>> fig.savefig('dF_state.pdf', bbox_inches='tight')

Will give a plot looks like this

3.7.5 Forward and Backward Convergence

One way of determining the simulation end point is to plot the forward and backward convergence of the estimate using
plot_convergence().

Note that this is just a plotting function to plot [Klimovich2015] style convergence plot. The user need to provide the
forward and backward data list and the corresponding error.

>>> import pandas as pd
>>> from alchemtest.gmx import load_benzene
>>> from alchemlyb.parsing.gmx import extract_u_nk
>>> from alchemlyb.estimators import MBAR

>>> bz = load_benzene().data
>>> data_list = [extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']]
>>> forward = []
>>> forward_error = []
>>> backward = []
>>> backward_error = []
>>> num_points = 10

(continues on next page)

48 Chapter 3. Getting involved

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Fig. 4: A bar plot of the free energy differences evaluated between pairs of adjacent states via several methods, with
corresponding error estimates for each method.

3.7. Visualisation of the results 49

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

>>> for i in range(1, num_points+1):
>>> # Do the forward
>>> slice = int(len(data_list[0])/num_points*i)
>>> u_nk_coul = alchemlyb.concat([data[:slice] for data in data_list])
>>> estimate = MBAR().fit(u_nk_coul)
>>> forward.append(estimate.delta_f_.iloc[0,-1])
>>> forward_error.append(estimate.d_delta_f_.iloc[0,-1])
>>> # Do the backward
>>> u_nk_coul = alchemlyb.concat([data[-slice:] for data in data_list])
>>> estimate = MBAR().fit(u_nk_coul)
>>> backward.append(estimate.delta_f_.iloc[0,-1])
>>> backward_error.append(estimate.d_delta_f_.iloc[0,-1])

>>> from alchemlyb.visualisation import plot_convergence
>>> ax = plot_convergence(forward, forward_error, backward, backward_error)
>>> ax.figure.savefig('dF_t.pdf')

Will give a plot looks like this

Fig. 5: A convergence plot of showing that the forward and backward has converged fully.

50 Chapter 3. Getting involved

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.8 Automatic workflow

Though alchemlyb is a library offering great flexibility in deriving free energy estimate, it also provides workflows
that provides automatic analysis of the results and step-by-step version that allows more flexibility.

For developers, the skeleton of the workflow should follow the example in alchemlyb.workflows.base.
WorkflowBase.

For users, alchemlyb offers a workflow alchemlyb.workflows.ABFE similar to Alchemical Analysis for doing au-
tomatic absolute binding free energy (ABFE) analysis.

base Basic building blocks for free energy workflows.
ABFE(T[, units, software, dir, prefix, ...]) Workflow for absolute and relative binding free energy

calculations.

3.8.1 The base workflow

Basic building blocks for free energy workflows.

The alchemlyb.workflows.base.WorkflowBase class provides a basic API template for the workflow develop-
ment. The workflow should be able to run in an automatic fashion.

>>> from alchemlyb.workflows.base import WorkflowBase
>>> workflow = WorkflowBase(units='kT', software='Gromacs', T=298,

out='./', *args, **kwargs)
>>> workflow.run(*args, **kwargs)

Three main functions are provided such that the workflow could be run in a step-by-step fashion.

>>> from alchemlyb.workflows.base import WorkflowBase
>>> workflow = WorkflowBase(units='kT', software='Gromacs', T=298,

out='./', *args, **kwargs)
>>> workflow.read(*args, **kwargs)
>>> workflow.preprocess(*args, **kwargs)
>>> workflow.estimate(*args, **kwargs)
>>> workflow.check_convergence(*args, **kwargs)
>>> workflow.plot(*args, **kwargs)

API Reference

class alchemlyb.workflows.base.WorkflowBase(units='kT', software='Gromacs', T=298, out='./', *args,
**kwargs)

The base class for the Workflow.

This is the base class for the creation of new Workflow. The initialisation method takes in the MD engine, unit,
temperature and output directory. The goal of the initialisation is to check the input files and store them in
file_list such that they can be read by the read() method.

Parameters

• units (string, optional) – The unit used for printing and plotting results. {‘kcal/mol’,
‘kJ/mol’, ‘kT’}. Default: ‘kT’.

3.8. Automatic workflow 51

https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

• software (string, optional) – The software used for generating input. {‘Gromacs’,
‘Amber’}

• T (float, optional,) – Temperature in K. Default: 298.

• out (string, optional) – Directory in which the output files produced by this script will
be stored. Default: ‘./’.

file_list

A list of files to be read by the parser.

Type
list

New in version 0.7.0.

run(*args, **kwargs)
Run the workflow in an automatic fashion.

This method would execute the read(), preprocess(), estimate(), check_convergence(), plot()
sequentially such that the whole analysis could be done automatically.

This method takes in an arbitrary number of arguments and pass all of them to the underlying methods.
The methods will be selecting the keywords that they would like to use.

Running this method would generate the resulting attributes for the user to retrieve the results.

u_nk_list

A list of pandas.DataFrame of u_nk.
Type

list

dHdl_list

A list of pandas.DataFrame of dHdl.
Type

list

u_nk_sample_list

A list of pandas.DataFrame of the subsampled u_nk.
Type

list

dHdl_sample_list

A list of pandas.DataFrame of the subsampled dHdl.
Type

list

result

The main result of the workflow.
Type

pandas.Dataframe

convergence

The result of the convergence analysis.
Type

pandas.Dataframe

read(*args, **kwargs)
The function that reads the files in file_list and parse them into u_nk and dHdl files.

52 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

u_nk_list

A list of pandas.DataFrame of u_nk.
Type

list

dHdl_list

A list of pandas.DataFrame of dHdl.
Type

list

preprocess(*args, **kwargs)
The function that subsample the u_nk and dHdl in u_nk_list and dHdl_list.

u_nk_sample_list

A list of pandas.DataFrame of the subsampled u_nk.
Type

list

dHdl_sample_list

A list of pandas.DataFrame of the subsampled dHdl.
Type

list

estimate(*args, **kwargs)
The function that runs the estimator based on u_nk_sample_list and dHdl_sample_list.

result

The main result of the workflow.
Type

pandas.Dataframe

check_convergence(*args, **kwargs)
The function for doing convergence analysis.

convergence

The result of the convergence analysis.
Type

pandas.Dataframe

plot(*args, **kwargs)
The function for producing any plots.

3.8.2 The ABFE workflow

The Absolute binding free energy (ABFE) workflow provides a complete workflow that uses the energy files generated
by MD engine as input and generates the binding free energy as well as the analysis plots.

3.8. Automatic workflow 53

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Fully Automatic analysis

Absolute binding free energy (ABFE) calculations can be analyzed with two lines of code in a fully automated manner
(similar to Alchemical Analysis). In this case, any parameters are set when invoking ABFE and reasonable defaults are
chosen for any parameters not set explicitly. The two steps are to

1. initialize an instance of the ABFE class

2. invoke the run() method to execute complete workflow.

For a GROMACS ABFE simulation, executing the workflow would look similar to the following code (See how to
configure the logger).

>>> from alchemtest.gmx import load_ABFE
>>> from alchemlyb.workflows import ABFE
>>> # Obtain the path of the data
>>> import os
>>> dir = os.path.dirname(load_ABFE()['data']['complex'][0])
>>> print(dir)
'alchemtest/gmx/ABFE/complex'
>>> workflow = ABFE(units='kcal/mol', software='GROMACS', dir=dir,
>>> prefix='dhdl', suffix='xvg', T=298, outdirectory='./')
>>> workflow.run(skiptime=10, uncorr='dhdl', threshold=50,
>>> estimators=('MBAR', 'BAR', 'TI'), overlap='O_MBAR.pdf',
>>> breakdown=True, forwrev=10)

The workflow uses the parsing to parse the data from the energy files, remove the initial unequilibrated frames and
decorrelate the data with subsampling. The decorrelated dataset dHdl and u_nk are then passed to estimators for
free energy estimation. The workflow will also perform a set of analysis that allows the user to examine the quality of
the estimation.

File Input

This command expects the energy files to be structured in two common ways. It could either be

simulation
lambda_0

prod.xvg
...

lambda_1
prod.xvg
...

...

Where dir='simulation/lambda_*', prefix='prod', suffix='xvg'. Or

dhdl_files
dhdl_0.xvg
dhdl_1.xvg
...

Where dir='dhdl_files', prefix='dhdl_', suffix='xvg'.

54 Chapter 3. Getting involved

https://github.com/MobleyLab/alchemical-analysis

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

Output

The workflow returns the free energy estimate using all of TI, BAR , MBAR . For ABFE calculations, the alchemical trans-
formation is usually done is three stages, the bonded, coul and vdw which corresponds to the free energy contribution
from applying the restraint to restrain the ligand to the protein, decouple/annihilate the coulombic interaction between
the ligand and the protein and decouple/annihilate the protein-ligand lennard jones interactions. The result will be
stored in summary as pandas.Dataframe.

MBAR MBAR_Error BAR BAR_Error TI TI_Error
States 0 -- 1 0.065967 0.001293 0.066544 0.001661 0.066663 0.001675

1 -- 2 0.089774 0.001398 0.089303 0.002101 0.089566 0.002144
2 -- 3 0.132036 0.001638 0.132687 0.002990 0.133292 0.003055

...
26 -- 27 1.243745 0.011239 1.245873 0.015711 1.248959 0.015762
27 -- 28 1.128429 0.012859 1.124554 0.016999 1.121892 0.016962
28 -- 29 1.010313 0.016442 1.005444 0.017692 1.019747 0.017257

Stages coul 10.215658 0.033903 10.017838 0.041839 10.017854 0.048744
vdw 22.547489 0.098699 22.501150 0.060092 22.542936 0.106723
bonded 2.374144 0.014995 2.341631 0.005507 2.363828 0.021078
TOTAL 35.137291 0.103580 34.860619 0.087022 34.924618 0.119206

Output Files

For quality assessment, a couple of plots were generated and written to the folder specified by outdirectory.

The overlay matrix for the MBAR estimator will be plotted and saved to O_MBAR.pdf, which examines the overlap
between different lambda windows.

The dHdl for TI will be plotted to dhdl_TI.pdf, allows one to examine if the lambda scheduling has covered the
change of the gradient in the lambda space.

The dF states will be plotted to dF_state.pdf in portrait model and dF_state_long.pdf in landscape model, which
allows the user to example the contributions from each lambda window.

The forward and backward convergence will be plotted to dF_t.pdf using MBAR and saved in convergence, which
allows the user to examine if the simulation time is enough to achieve a converged result.

Semi-automatic analysis

The same analysis could also performed in steps allowing access and modification to the data generated at each stage
of the analysis.

>>> from alchemtest.gmx import load_ABFE
>>> from alchemlyb.workflows import ABFE
>>> # Obtain the path of the data
>>> import os
>>> dir = os.path.dirname(load_ABFE()['data']['complex'][0])
>>> print(dir)
'alchemtest/gmx/ABFE/complex'
>>> # Load the data
>>> workflow = ABFE(software='GROMACS', dir=dir,
>>> prefix='dhdl', suffix='xvg', T=298, outdirectory='./')
>>> # Set the unit.

(continues on next page)

3.8. Automatic workflow 55

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

>>> workflow.update_units('kcal/mol')
>>> # Read the data
>>> workflow.read()
>>> # Decorrelate the data.
>>> workflow.preprocess(skiptime=10, uncorr='dhdl', threshold=50)
>>> # Run the estimator
>>> workflow.estimate(estimators=('mbar', 'bar', 'ti'))
>>> # Retrieve the result
>>> summary = workflow.generate_result()
>>> # Plot the overlap matrix
>>> workflow.plot_overlap_matrix(overlap='O_MBAR.pdf')
>>> # Plot the dHdl for TI
>>> workflow.plot_ti_dhdl(dhdl_TI='dhdl_TI.pdf')
>>> # Plot the dF states
>>> workflow.plot_dF_state(dF_state='dF_state.pdf')
>>> # Convergence analysis
>>> workflow.check_convergence(10, dF_t='dF_t.pdf')

API Reference

class alchemlyb.workflows.ABFE(T, units='kT', software='GROMACS', dir='.', prefix='dhdl', suffix='xvg',
outdirectory='.')

Workflow for absolute and relative binding free energy calculations.

This workflow provides functionality similar to the alchemical-analysis.py script. It loads multiple in-
put files from alchemical free energy calculations and computes the free energies between different alchemical
windows using different estimators. It produces plots to aid in the assessment of convergence.

Parameters

• T (float) – Temperature in K.

• units (str) – The unit used for printing and plotting results. {‘kcal/mol’, ‘kJ/mol’, ‘kT’}.
Default: ‘kT’.

• software (str) – The software used for generating input (case-insensitive). {‘GROMACS’,
‘AMBER’, ‘PARQUET’}. This option chooses the appropriate parser for the input file.

• dir (str) – Directory in which data files are stored. Default: os.path.curdir.

• prefix (str) – Prefix for datafile sets. This argument accepts regular expressions and the in-
put files are searched using Path(dir).glob("**/" + prefix + "*" + suffix). De-
fault: ‘dhdl’.

• suffix (str) – Suffix for datafile sets. Default: ‘xvg’.

• outdirectory (str) – Directory in which the output files produced by this script will be
stored. Default: os.path.curdir.

logger

The logging object.

Type
Logger

56 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

file_list

The list of filenames sorted by the lambda state.

Type
list

New in version 1.0.0.

Changed in version 2.0.1: The dir argument expects a real directory without wildcards and wildcards will no
longer work as expected. Use prefix to specify wildcard-based patterns to search under dir.

Changed in version 2.1.0: The serialised dataframe could be read via software=’PARQUET’.

read(read_u_nk=True, read_dHdl=True)
Read the u_nk and dHdL data from the file_list

Parameters

• read_u_nk (bool) – Whether to read the u_nk.

• read_dHdl (bool) – Whether to read the dHdl.

u_nk_list

A list of pandas.DataFrame of u_nk.
Type

list

dHdl_list

A list of pandas.DataFrame of dHdl.
Type

list

run(skiptime=0, uncorr='dE', threshold=50, estimators=('MBAR', 'BAR', 'TI'), overlap='O_MBAR.pdf',
breakdown=True, forwrev=None, *args, **kwargs)
The method for running the automatic analysis.

Parameters

• skiptime (float) – Discard data prior to this specified time as ‘equilibration’ data. Units
are specified by the corresponding MD Engine. Default: 0.

• uncorr (str) – The observable to be used for the autocorrelation analysis; ‘dE’.

• threshold (int) – Proceed with correlated samples if the number of uncorrelated samples
is found to be less than this number. If 0 is given, the time series analysis will not be
performed at all. Default: 50.

• estimators (str or list of str) – A list of the estimators to estimate the free energy
with. Default: (‘MBAR’, ‘BAR’, ‘TI’).

• overlap (str) – The filename for the plot of overlap matrix. Default: ‘O_MBAR.pdf’.

• breakdown (bool) – Plot the free energy differences evaluated for each pair of adjacent
states for all methods, including the dH/dlambda curve for TI. Default: True.

• forwrev (int) – Plot the free energy change as a function of time in both directions,
with the specified number of points in the time plot. The number of time points (an
integer) must be provided. Specify as None will not do the convergence analysis. De-
fault: None. By default, ‘MBAR’ estimator will be used for convergence analysis, as it
is usually the fastest converging method. If the dataset does not contain u_nk, please run
meth:~alchemlyb.workflows.ABFE.check_convergence manually with estimator=’TI’.

3.8. Automatic workflow 57

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

summary

The summary of the free energy estimate.
Type

Dataframe

convergence

The summary of the convergence results. See forward_backward_convergence() for further ex-
planation.

Type
DataFrame

update_units(units=None)
Update the unit.

Parameters
units ({'kcal/mol', 'kJ/mol', 'kT'}) – The unit used for printing and plotting results.

preprocess(skiptime=0, uncorr='dE', threshold=50)
Preprocess the data by removing the equilibration time and decorrelate the date.

Parameters

• skiptime (float) – Discard data prior to this specified time as ‘equilibration’ data. Units
are specified by the corresponding MD Engine. Default: 0.

• uncorr (str) – The observable to be used for the autocorrelation analysis; ‘dE’.

• threshold (int) – Proceed with correlated samples if the number of uncorrelated samples
is found to be less than this number. If 0 is given, the time series analysis will not be
performed at all. Default: 50.

u_nk_sample_list

The list of u_nk after decorrelation.
Type

list

dHdl_sample_list

The list of dHdl after decorrelation.
Type

list

estimate(estimators=('MBAR', 'BAR', 'TI'), **kwargs)
Estimate the free energy using the selected estimator.

Parameters

• estimators (str or list of str) – A list of the estimators to estimate the free energy
with. Default: [‘TI’, ‘BAR’, ‘MBAR’].

• kwargs (dict) – Keyword arguments to be passed to the estimator.

estimator

The dictionary of estimators. The keys are in [‘TI’, ‘BAR’, ‘MBAR’]. Note that the estimators are in
their original form where no unit conversion has been attempted.

Type
dict

Changed in version 2.1.0: DeprecationWarning for using analytic error for MBAR estimator.

58 Chapter 3. Getting involved

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

generate_result()

Summarise the result into a dataframe.

Returns

The DataFrame with convergence data.

MBAR MBAR_Error BAR BAR_Error ␣
→˓TI TI_Error
States 0 -- 1 0.065967 0.001293 0.066544 0.001661 0.
→˓066663 0.001675

1 -- 2 0.089774 0.001398 0.089303 0.002101 0.
→˓089566 0.002144

2 -- 3 0.132036 0.001638 0.132687 0.002990 0.
→˓133292 0.003055

3 -- 4 0.116494 0.001213 0.116348 0.002691 0.
→˓116845 0.002750

4 -- 5 0.105251 0.000980 0.106344 0.002337 0.
→˓106603 0.002362

5 -- 6 0.349320 0.002781 0.343399 0.006839 0.
→˓350568 0.007393

6 -- 7 0.402346 0.002767 0.391368 0.006641 0.
→˓395754 0.006961

7 -- 8 0.322284 0.002058 0.319395 0.005333 0.
→˓321542 0.005434

8 -- 9 0.434999 0.002683 0.425680 0.006823 0.
→˓430251 0.007155

9 -- 10 0.355672 0.002219 0.350564 0.005472 0.
→˓352745 0.005591

10 -- 11 3.574227 0.008744 3.513595 0.018711 3.
→˓514790 0.018078

11 -- 12 2.896685 0.009905 2.821760 0.017844 2.
→˓823210 0.018088

12 -- 13 2.223769 0.011229 2.188885 0.018438 2.
→˓189784 0.018478

13 -- 14 1.520978 0.012526 1.493598 0.019155 1.
→˓490070 0.019288

14 -- 15 0.911279 0.009527 0.894878 0.015023 0.
→˓896010 0.015140

15 -- 16 0.892365 0.010558 0.886706 0.015260 0.
→˓884698 0.015392

16 -- 17 1.737971 0.025315 1.720643 0.031416 1.
→˓741028 0.030624

17 -- 18 1.790706 0.025560 1.788112 0.029435 1.
→˓801695 0.029244

18 -- 19 1.998635 0.023340 2.007404 0.027447 2.
→˓019213 0.027096

19 -- 20 2.263475 0.020286 2.265322 0.025023 2.
→˓282040 0.024566

20 -- 21 2.565680 0.016695 2.561324 0.023611 2.
→˓552977 0.023753

21 -- 22 1.384094 0.007553 1.385837 0.011672 1.
→˓381999 0.011991

22 -- 23 1.428567 0.007504 1.422689 0.012524 1.
(continues on next page)

3.8. Automatic workflow 59

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

(continued from previous page)

→˓416010 0.013012
23 -- 24 1.440581 0.008059 1.412517 0.013125 1.

→˓408267 0.013539
24 -- 25 1.411329 0.009022 1.419167 0.013356 1.

→˓411446 0.013795
25 -- 26 1.340320 0.010167 1.360679 0.015213 1.

→˓356953 0.015260
26 -- 27 1.243745 0.011239 1.245873 0.015711 1.

→˓248959 0.015762
27 -- 28 1.128429 0.012859 1.124554 0.016999 1.

→˓121892 0.016962
28 -- 29 1.010313 0.016442 1.005444 0.017692 1.

→˓019747 0.017257
Stages coul 10.215658 0.033903 10.017838 0.041839 10.
→˓017854 0.048744

vdw 22.547489 0.098699 22.501150 0.060092 22.
→˓542936 0.106723

bonded 2.374144 0.014995 2.341631 0.005507 2.
→˓363828 0.021078

TOTAL 35.137291 0.103580 34.860619 0.087022 34.
→˓924618 0.119206

Return type
DataFrame

summary

The summary of the free energy estimate.
Type

Dataframe

plot(*args, **kwargs)
The function for producing any plots.

plot_overlap_matrix(overlap='O_MBAR.pdf', ax=None)
Plot the overlap matrix for MBAR estimator using plot_mbar_overlap_matrix().

Parameters

• overlap (str) – The filename for the plot of overlap matrix. Default: ‘O_MBAR.pdf’

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn on.
If ax=None, a new axes will be generated.

Returns
An axes with the overlap matrix drawn.

Return type
matplotlib.axes.Axes

plot_ti_dhdl(dhdl_TI='dhdl_TI.pdf', labels=None, colors=None, ax=None)
Plot the dHdl for TI estimator using plot_ti_dhdl().

Parameters

• dhdl_TI (str) – The filename for the plot of TI dHdl. Default: ‘dhdl_TI.pdf’

• labels (List) – list of labels for labelling all the alchemical transformations.

60 Chapter 3. Getting involved

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

• colors (List) – list of colors for plotting all the alchemical transformations. Default: [‘r’,
‘g’, ‘#7F38EC’, ‘#9F000F’, ‘b’, ‘y’]

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn on.
If ax=None, a new axes will be generated.

Returns
An axes with the TI dhdl drawn.

Return type
matplotlib.axes.Axes

plot_dF_state(dF_state='dF_state.pdf', labels=None, colors=None, orientation='portrait', nb=10)
Plot the dF states using plot_dF_state().

Parameters

• dF_state (str) – The filename for the plot of dF states. Default: ‘dF_state.pdf’

• labels (List) – list of labels for labelling different estimators.

• colors (List) – list of colors for plotting different estimators.

• orientation (string) – The orientation of the figure. Can be portrait or landscape

• nb (int) – Maximum number of dF states in one row in the portrait mode

Returns
An Figure with the dF states drawn.

Return type
matplotlib.figure.Figure

check_convergence(forwrev, estimator='MBAR', dF_t='dF_t.pdf', ax=None, **kwargs)
Compute the forward and backward convergence using plot_convergence().

Parameters

• forwrev (int) – Plot the free energy change as a function of time in both directions, with
the specified number of points in the time plot. The number of time points (an integer)
must be provided.

• estimator ({'TI', 'BAR', 'MBAR'}) – The estimator used for convergence analysis. De-
fault: ‘MBAR’

• dF_t (str) – The filename for the plot of convergence. Default: ‘dF_t.pdf’

• ax (matplotlib.axes.Axes) – Matplotlib axes object where the plot will be drawn on.
If ax=None, a new axes will be generated.

• kwargs (dict) – Keyword arguments to be passed to the estimator.

convergence

Type
DataFrame

Returns
An axes with the convergence drawn.

Return type
matplotlib.axes.Axes

3.8. Automatic workflow 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

3.9 Miscellaneous

This page includes aspects that would improve your usage of alchemlyb.

3.9.1 Logging

In alchemlyb, we use loguru for logging. By default, the loguruwill print the logging information into the sys.stderr.

Print to the stderr

If you want to customise the printing to the stderr, you could remove the existing sink first

from loguru import logger
logger.remove()

Then add other custom sink

logger.add(sys.stderr, format="{time} {level} {message}", level="INFO")

The loguru logger is compatible with the logging module of the Python standard library and can easily be configured
to log to a logging handler.

Save to a file

Alternatively, one could save to a file simply with

from loguru import logger
logger.add("file_{time}.log")

See configure to log to a file for more explanation.

3.10 References

3.11 API principles

The following is an overview over the guiding principles and ideas that underpin the API of alchemlyb.

3.11.1 alchemlyb

alchemlyb is a library that seeks to make doing alchemical free energy calculations easier and less error prone. It
includes functions for parsing data from formats common to existing MD engines, subsampling these data, and fitting
these data with an estimator to obtain free energies. These functions are simple in usage and pure in scope, and can be
chained together to build customized analyses of data. General and robust workflows following best practices are also
provided, which can be used as reference implementations and examples.

alchemlyb seeks to be as boring and simple as possible to enable more complex work. Its components allow work at
all scales, from use on small systems using a single workstation to larger datasets that require distributed computing
using libraries such as dask.

62 Chapter 3. Getting involved

https://loguru.readthedocs.io/en/stable/api.html#module-loguru
https://loguru.readthedocs.io/en/stable/api.html#module-loguru
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/logging.html#module-logging
https://loguru.readthedocs.io/en/stable/overview.html#entirely-compatible-with-standard-logging
https://loguru.readthedocs.io/en/stable/overview.html#entirely-compatible-with-standard-logging
https://loguru.readthedocs.io/en/stable/overview.html#easier-file-logging-with-rotation-retention-compression

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

First and foremost, scientific code must be correct and we try to ensure this requirement by following best software
engineering practices during development, close to full test coverage of all code in the library, and providing citations
to published papers for included algorithms. We use a curated, public data set (alchemtest) for automated testing.

3.11.2 Core philosophy

1. Use functions when possible, classes only when necessary (or for estimators, see (2)).

2. For estimators, mimic the scikit-learn API as much as possible.

3. Aim for a consistent interface throughout, e.g. all parsers take similar inputs and yield a common set of outputs.

4. Have all functionality tested.

3.11.3 API components

The library is structured as follows, following a similar style to scikit-learn:

alchemlyb
parsing

amber.py
gmx.py
gomc.py
namd.py
...

preprocessing
subsampling.py
...

estimators
bar_.py
mbar_.py
ti_.py
...

convergence
convergence.py
...

postprocessors
...
units.py

visualisation
convergence.py
dF_state.py
mbar_matrix.py
ti_dhdl.py
...

workflows ### WORK IN PROGRESS
base.py
abfe.py

• The parsing submodule contains parsers for individual MD engines, since the output files needed to perform
alchemical free energy calculations vary widely and are not standardized. Each module at the very least provides
an extract_u_nk function for extracting reduced potentials (needed for MBAR), as well as an extract_dHdl func-
tion for extracting derivatives required for thermodynamic integration. Moreover an extract` functon is provided,
which returns a dict containing both derivatives and reduced potentials. Other helper functions may be exposed

3.11. API principles 63

https://github.com/alchemistry/alchemtest

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

for additional processing, such as generating an XVG file from an EDR file in the case of GROMACS. All ex-
tract_* functions take similar arguments (a file path, parameters such as temperature), and produce standard
outputs (pandas.DataFrame for reduced potentials, pandas.Series for derivatives).

• The preprocessing submodule features functions for subsampling timeseries, as may be desired before feeding
them to an estimator. So far, these are limited to slicing, statistical_inefficiency, and equilibrium_detection
functions, many of which make use of subsampling schemes available from pymbar. These functions are written
in such a way that they can be easily composed as parts of complex processing pipelines.

• The estimatorsmodule features classes a la scikit-learn that can be initialized with parameters that determine
their behavior and then “trained” on a fit method. MBAR, BAR, and thermodynamic integration (TI) as the major
methods are all implemented. Correct error estimates require the use of time series with independent samples.

• The convergence submodule features convenience functions/classes for doing convergence analysis using a
given dataset and a chosen estimator.

• The postprocessors submodule contains functions to calculate new quantities or express data in different
units.

• The visualisation submodule contains convenience plotting functions as known from, for example,
alchemical-analysis.py.

• The workflows submodule contains complete analysis workflows . . .
For example, alchemlyb.workflows.abfe implements a complete absolute binding free energy calcu-
lation.”.

All of these components lend themselves well to writing clear and flexible pipelines for processing data needed for
alchemical free energy calculations, and furthermore allow for scaling up via libraries like dask or joblib.

3.11.4 Development model

This is an open-source project, the hope of which is to produce a library with which the community is happy. To enable
this, the library will be a community effort. Development is done in the open on GitHub. Software engineering best-
practices will be used throughout, including continuous integration testing via Travis CI, up-to-date documentation,
and regular releases.

Following discussion, refinement, and consensus on this proposal, issues for each need will be posted and work will
begin on filling out the rest of the library. In particular, parsers will be crowdsourced from the existing community and
refined into the consistent form described above.

3.11.5 Historical notes

Some of the components were originally demoed in gist a41e5756a58e1775e3e3a915f07bfd37.

David Dotson (@dotsdl) started the project while employed as a software engineer by Oliver Beckstein (@orbeckst),
and this project was a primary point of focus for him in this position.

64 Chapter 3. Getting involved

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://github.com/MobleyLab/alchemical-analysis/
https://dask.org/
https://joblib.readthedocs.io
https://gist.github.com/dotsdl/a41e5756a58e1775e3e3a915f07bfd37

BIBLIOGRAPHY

[Bennett1976] C. H. Bennett. (1976). Efficient estimation of free energy differences from Monte Carlo data. J Comp
Phys 22, 245–268. doi: 10.1016/0021-9991(76)90078-4.

[Shirts2008] M. R. Shirts and J. D. Chodera. (2008). Statistically optimal analysis of samples from multiple equilibrium
states. J Chem Phys 129, 124105. doi: 10.1063/1.2978177.

[Klimovich2015] Klimovich, P.V., M. R. Shirts, and D. L. Mobley. (2015) Guidelines for the analysis of free energy
calculations. Journal of Computer-Aided Molecular Design 29, 397-411. doi: 10.1007/s10822-015-9840-
9.

[Chodera2016] J. D. Chodera. (2016). A simple method for automated equilibration detection in molecular simula-
tions. Journal of Chemical Theory and Computation 12, 1799-1805. doi: 10.1021/acs.jctc.5b00784.

[Fan2020] Fan, S., B. I. Iorga, and O. Beckstein. (2020). Prediction of octanol-water partition coefficients for
the SAMPL6-log P molecules using molecular dynamics simulations with OPLS-AA, AMBER and
CHARMM force fields. Journal of Computer-Aided Molecular Design 34, 543–560. doi:10.1007/s10822-
019-00267-z.

[Fan2021] Fan, S., Nedev, H., Vijayan, R., Iorga, B.I., and Beckstein, O. (2021). Precise force-field-based calculations
of octanol-water partition coefficients for the SAMPL7 molecules. Journal of Computer-Aided Molecular
Design 35, 853–887. doi: 10.1007/s10822-021-00407-4.

65

https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1063/1.2978177
https://doi.org/10.1007/s10822-015-9840-9
https://doi.org/10.1007/s10822-015-9840-9
https://doi.org/10.1021/acs.jctc.5b00784
https://doi.org/10.1007/s10822-019-00267-z
https://doi.org/10.1007/s10822-019-00267-z
https://doi.org/10.1007/s10822-021-00407-4

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

66 Bibliography

PYTHON MODULE INDEX

a
alchemlyb.convergence, 33
alchemlyb.convergence.convergence, 36
alchemlyb.estimators, 24
alchemlyb.parsing, 8
alchemlyb.parsing.amber, 14
alchemlyb.parsing.gmx, 12
alchemlyb.parsing.gomc, 17
alchemlyb.parsing.namd, 16
alchemlyb.postprocessors, 38
alchemlyb.postprocessors.units, 39
alchemlyb.preprocessing, 19
alchemlyb.preprocessing.subsampling, 19
alchemlyb.visualisation, 42
alchemlyb.workflows.base, 51

67

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

68 Python Module Index

INDEX

A
A_c() (in module alchemlyb.convergence), 38
ABFE (class in alchemlyb.workflows), 56
alchemlyb.convergence

module, 33
alchemlyb.convergence.convergence

module, 36
alchemlyb.estimators

module, 24
alchemlyb.parsing

module, 8
alchemlyb.parsing.amber

module, 14
alchemlyb.parsing.gmx

module, 12
alchemlyb.parsing.gomc

module, 17
alchemlyb.parsing.namd

module, 16
alchemlyb.postprocessors

module, 38
alchemlyb.postprocessors.units

module, 39
alchemlyb.preprocessing

module, 19
alchemlyb.preprocessing.subsampling

module, 19
alchemlyb.visualisation

module, 42
alchemlyb.workflows.base

module, 51

B
BAR (class in alchemlyb.estimators), 31

C
check_convergence() (alchemlyb.workflows.ABFE

method), 61
check_convergence()

(alchemlyb.workflows.base.WorkflowBase
method), 53

concat() (in module alchemlyb), 11

convergence (alchemlyb.workflows.ABFE attribute), 58,
61

convergence (alchemlyb.workflows.base.WorkflowBase
attribute), 52, 53

D
d_delta_f_ (alchemlyb.estimators.BAR attribute), 32
d_delta_f_ (alchemlyb.estimators.MBAR attribute), 30
d_delta_f_ (alchemlyb.estimators.TI attribute), 26
decorrelate_dhdl() (in module

alchemlyb.preprocessing.subsampling), 21
decorrelate_u_nk() (in module

alchemlyb.preprocessing.subsampling), 20
delta_f_ (alchemlyb.estimators.BAR attribute), 31
delta_f_ (alchemlyb.estimators.MBAR attribute), 29
delta_f_ (alchemlyb.estimators.TI attribute), 26
dhdl (alchemlyb.estimators.TI attribute), 26
dhdl2series() (in module

alchemlyb.preprocessing.subsampling), 22
dHdl_list (alchemlyb.workflows.ABFE attribute), 57
dHdl_list (alchemlyb.workflows.base.WorkflowBase at-

tribute), 52, 53
dHdl_sample_list (alchemlyb.workflows.ABFE at-

tribute), 58
dHdl_sample_list (alchemlyb.workflows.base.WorkflowBase

attribute), 52, 53

E
equilibrium_detection() (in module

alchemlyb.preprocessing.subsampling), 23
estimate() (alchemlyb.workflows.ABFE method), 58
estimate() (alchemlyb.workflows.base.WorkflowBase

method), 53
estimator (alchemlyb.workflows.ABFE attribute), 58
extract() (in module alchemlyb.parsing.amber), 15
extract() (in module alchemlyb.parsing.gmx), 14
extract() (in module alchemlyb.parsing.gomc), 18
extract() (in module alchemlyb.parsing.namd), 17
extract_dHdl() (in module alchemlyb.parsing.amber),

15
extract_dHdl() (in module alchemlyb.parsing.gmx),

13

69

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

extract_dHdl() (in module alchemlyb.parsing.gomc),
17

extract_dHdl() (in module
alchemlyb.parsing.parquet), 19

extract_u_nk() (in module alchemlyb.parsing.amber),
15

extract_u_nk() (in module alchemlyb.parsing.gmx),
13

extract_u_nk() (in module alchemlyb.parsing.gomc),
18

extract_u_nk() (in module alchemlyb.parsing.namd),
16

extract_u_nk() (in module
alchemlyb.parsing.parquet), 18

F
file_list (alchemlyb.workflows.ABFE attribute), 56
file_list (alchemlyb.workflows.base.WorkflowBase at-

tribute), 52
fit() (alchemlyb.estimators.BAR method), 32
fit() (alchemlyb.estimators.MBAR method), 30
fit() (alchemlyb.estimators.TI method), 27
forward_backward_convergence() (in module

alchemlyb.convergence), 36
fwdrev_cumavg_Rc() (in module

alchemlyb.convergence), 37

G
generate_result() (alchemlyb.workflows.ABFE

method), 58
get_params() (alchemlyb.estimators.BAR method), 32
get_params() (alchemlyb.estimators.MBAR method),

30
get_params() (alchemlyb.estimators.TI method), 27
get_unit_converter() (in module

alchemlyb.postprocessors.units), 41

K
kJ2kcal (in module alchemlyb.postprocessors.units), 41

L
logger (alchemlyb.workflows.ABFE attribute), 56

M
MBAR (class in alchemlyb.estimators), 29
module

alchemlyb.convergence, 33
alchemlyb.convergence.convergence, 36
alchemlyb.estimators, 24
alchemlyb.parsing, 8
alchemlyb.parsing.amber, 14
alchemlyb.parsing.gmx, 12
alchemlyb.parsing.gomc, 17

alchemlyb.parsing.namd, 16
alchemlyb.postprocessors, 38
alchemlyb.postprocessors.units, 39
alchemlyb.preprocessing, 19
alchemlyb.preprocessing.subsampling, 19
alchemlyb.visualisation, 42
alchemlyb.workflows.base, 51

O
overlap_matrix (alchemlyb.estimators.MBAR prop-

erty), 30

P
pass_attrs() (in module alchemlyb), 12
plot() (alchemlyb.workflows.ABFE method), 60
plot() (alchemlyb.workflows.base.WorkflowBase

method), 53
plot_convergence() (in module

alchemlyb.visualisation), 45
plot_dF_state() (alchemlyb.workflows.ABFE

method), 61
plot_dF_state() (in module alchemlyb.visualisation),

44
plot_mbar_overlap_matrix() (in module

alchemlyb.visualisation), 42
plot_overlap_matrix() (alchemlyb.workflows.ABFE

method), 60
plot_ti_dhdl() (alchemlyb.workflows.ABFE method),

60
plot_ti_dhdl() (in module alchemlyb.visualisation),

43
preprocess() (alchemlyb.workflows.ABFE method), 58
preprocess() (alchemlyb.workflows.base.WorkflowBase

method), 53

R
R_kJmol (in module alchemlyb.postprocessors.units), 41
read() (alchemlyb.workflows.ABFE method), 57
read() (alchemlyb.workflows.base.WorkflowBase

method), 52
result (alchemlyb.workflows.base.WorkflowBase at-

tribute), 52, 53
run() (alchemlyb.workflows.ABFE method), 57
run() (alchemlyb.workflows.base.WorkflowBase

method), 52

S
separate_dhdl() (alchemlyb.estimators.TI method), 27
set_params() (alchemlyb.estimators.BAR method), 32
set_params() (alchemlyb.estimators.MBAR method),

31
set_params() (alchemlyb.estimators.TI method), 27
slicing() (in module

alchemlyb.preprocessing.subsampling), 22

70 Index

alchemlyb Documentation, Release 2.1.0+0.gf5cf43a.dirty

states_ (alchemlyb.estimators.BAR attribute), 32
states_ (alchemlyb.estimators.MBAR attribute), 30
states_ (alchemlyb.estimators.TI attribute), 26
statistical_inefficiency() (in module

alchemlyb.preprocessing.subsampling), 22
summary (alchemlyb.workflows.ABFE attribute), 57, 60

T
theta_ (alchemlyb.estimators.MBAR attribute), 30
TI (class in alchemlyb.estimators), 26
to_kcalmol() (in module

alchemlyb.postprocessors.units), 39
to_kJmol() (in module alchemlyb.postprocessors.units),

40
to_kT() (in module alchemlyb.postprocessors.units), 40

U
u_nk2series() (in module

alchemlyb.preprocessing.subsampling), 21
u_nk_list (alchemlyb.workflows.ABFE attribute), 57
u_nk_list (alchemlyb.workflows.base.WorkflowBase at-

tribute), 52
u_nk_sample_list (alchemlyb.workflows.ABFE at-

tribute), 58
u_nk_sample_list (alchemlyb.workflows.base.WorkflowBase

attribute), 52, 53
update_units() (alchemlyb.workflows.ABFE method),

58

W
WorkflowBase (class in alchemlyb.workflows.base), 51

Index 71

	Core philosophy
	Development model
	Getting involved
	Installing alchemlyb
	conda installation
	pip installation
	Installing from source

	Parsing data files
	Standard forms of raw data
	Serialisation
	dHdl standard form
	u_nk standard form
	A note on units
	Metadata Propagation

	Parsers by software package
	Gromacs parsing
	API Reference

	Amber parsing
	API Reference

	NAMD parsing
	API Reference

	GOMC parsing
	API Reference

	API Reference

	Preprocessing datasets
	Subsampling
	High-level functions
	Low-level functions
	API Reference

	Using estimators to obtain free energies
	TI-based estimators
	List of TI-based estimators
	TI
	API Reference

	FEP-based estimators
	List of FEP-based estimators
	MBAR
	API Reference

	BAR
	API Reference

	Assessing convergence
	Time Convergence
	Fractional equilibration time
	Convergence functions
	Convergence API Reference

	Tools for postprocessing
	Unit Conversion
	Unit Conversion Functions
	alchemlyb.postprocessors.units

	Constants and auxiliary functions
	Scientific constants
	Unit conversion developer information

	Visualisation of the results
	Plotting Functions
	Plot Overlap Matrix from MBAR
	API Reference

	Plot dhdl from TI
	API Reference

	Plot dF states from multiple estimators
	API Reference

	Plot the Forward and Backward Convergence
	API Reference

	Overlap Matrix of the MBAR
	dhdl Plot of the TI
	dF States Plots between Different estimators
	Forward and Backward Convergence

	Automatic workflow
	The base workflow
	API Reference

	The ABFE workflow
	Fully Automatic analysis
	File Input
	Output
	Output Files

	Semi-automatic analysis
	API Reference

	Miscellaneous
	Logging
	Print to the stderr
	Save to a file

	References
	API principles
	alchemlyb
	Core philosophy
	API components
	Development model
	Historical notes

	Bibliography
	Python Module Index
	Index

